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Econometric Forecasting Using Ubiquitous News
Text:

Text-enhanced Factor Model

The use of news text as a novel source for econometric forecasting is gaining
increasing attention. This paper revisited the way of incorporating narrative
information into econometric forecasting by effectively quantifying sector-
specific textual information without requiring training data. We exploit
Theme Frequency Indices(TFI) utilizing domain-specific subject-predicate
patterns to gauge public perception of the economy. TFIs of 15 sectors, includ-
ing production, inflation, employment, capital investment, stock and house
prices, and others, were examined and integrated into Text-enhanced Factor
Model(TFM) using latent factor structures. Empirical analysis, based on over
18 million news articles in Korea, reveals that TFM improves the accuracy
of near-term GDP forecasts, demonstrating simple text-mining techniques
along with domain knowledge are capable of leveraging qualitative informa-
tion from news without costly training. The proposed method is applicable to
a wide range of subjects for measuring narrative information of the economy,
offering a rapid and cost-effective approach.

Keywords: dynamic factor model; text mining; machine learning; economic
forecasting; nowcasting

JEL Classification: C45, C53, C55, C82
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Figure 1. Schematic diagram for economic forecasting with news text data.

I. Introduction

Over the last decade, nowcasting has been popular among central banks and
economists due to the increasing accessibility to big data. Many recent works
point out that text data is crucial to improve the prediction accuracy of nowcast-
ing models (Thorsrud, 2020; Babii et al., 2022; Kalamara et al., 2022; Barbaglia
et al., 2022). Various approaches have been studied to incorporate narrative in-
formation from text into quantitative research. However, most of the works rely
on topic modeling, i.e., text clustering (Thorsrud, 2020; Babii et al., 2022; Fer-
reira et al., 2021), using unsupervised methods like latent Dirichlet allocation
(LDA), or a few sector text indices (Kalamara et al., 2022) such as news sen-
timent index (NSI) (Shapiro et al., 2022; Seo et al., 2022) and economic policy
uncertainty (EPU) (Baker et al., 2016; Lee et al., 2020). Despite its popularity,
however, unsupervised approaches have inherent drawbacks. One major challenge
is that it can be difficult to verify the results as each cluster may not necessarily
connect to a specific economic topic1). On the other hand, supervised methods
using machine learning (Seo et al., 2022) can be expensive for developing even a
single index due to the need for labeled training data.

To address these challenges, we propose a novel text-mining approach to ex-
tract quantitative information from news text and incorporate it into an econo-
metric forecasting model. We generate text-based economic indicators, called
Theme Frequency Indices (TFI), for 15 sectors that are important for economic

1) Additionally, for the unsupervised method, information that appears with low frequency in the
text is often ignored as small clusters tend to merge with larger clusters, resulting in clustering
outcomes being vulnerable to the addition or removal of a few data points (Li et al., 2019).
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forecasts, including macroeconomic variables such as production, inflation, em-
ployment, capital investment, and stock and house prices, as well as industry-
related microeconomic variables such as semiconductor, and wholesale & retail.
We then propose a forecasting model, Text-enhanced Factor Model (TFM), that
employs the textual information to forecast economic variables.

Specifically, our proposed method utilizes a lexical approach to extract quan-
tified information from news text, based on predefined domain-specific subject-
predicate patterns of the 15 sectors. This approach does not require any training
data for computation and can be applied in a timely manner. The method gen-
erates essential sector indices for the economy, hence it is not only practical but
also can be verified by comparing the results to official statistics. Our empirical
analysis has shown a strong correlation between the text indices and the corre-
sponding official statistics for up to 10 months, where the text indices lead the
official statistics. Additionally, the proposed model, which incorporates textual
information, has also been demonstrated to improve the generalized testing ac-
curacy for near-term forecasting compared to the method that uses only official
statistics. Through texts, the model leverages qualitative information as well as
takes advantage of using the latest information ubiquitous in public when official
statistics are not available.

Textual information is particularly valuable for economic forecasting as it
addresses the challenge of limited availability of data for statistical models. Cur-
rently, economic judgment heavily relies on expert opinions, who qualitatively
evaluate various information (Mæhle et al., 2021). The limitation of statistical
models is primarily due to the difficulty in immediately incorporating sufficient
information. Firstly, outside of the financial sector, there are few high-frequency
economic indicators available on a daily or weekly basis. Additionally, official
statistics used as quantitative indicators often have a time lag in publication,
making them difficult to use in rapidly changing economic conditions. Moreover,
integrating qualitative information into quantitative models poses further diffi-
culties as variable importance varies depending on the economic situation and
cannot be easily quantified.

Textual information, however, can address the above-mentioned limitations,
as vast amounts of qualitative information are conveyed in a swift manner through
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Figure 2. The relationship between news and economic perceptions of the public.

Table 1. The characteristics of news text data.
Information Advantages & Disadvantages

Survey
Statistics

• Information on the topic • Managed by a quality control
• Cost and time-consuming
• Cannot be surveyed frequently

News
Text

Information

• Information on the topic
• Experts’ opinion and expectation
• Interpretation by journalists
• Degree of attention from the public

• Big data (volume, velocity, & variety)
• Include qualitative information
• May include noise

Notes: Text information obtained from the news is comparable to the information based on survey
statistics.

texts. News text, in particular, has the characteristic of delivering a wide variety
and volume of information quickly. Therefore, it is expected that faster economic
judgment is possible when appropriately incorporating the news information into
forecasting models (Babii et al., 2022; Bybee et al., 2021; Thorsrud, 2020). News
articles not only present factual information, quoting statistics but also convey
expert opinions and insights through interviews and journalists’ interpretations
of the economy. Additionally, news stories that capture public interest are more
likely to be widely distributed, reflecting the evolving interests of the public over
time. This stands in contrast to official statistics that rely on fixed metrics.

The information gleaned from news texts can be likened to that obtained
through surveys. The news texts have a two-fold effect on the public’s perception
of the economy: news journalists capture the public’s perception of the economy
while their reporting also impacts it. Surveys, an experimental study method, are
a reliable method for gouging public opinion, managed under stringent quality
control. However, they are costly, time-consuming, and not frequently feasible.
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In contrast, text mining, an observational study method, can extract similar
information as surveys with significantly lower costs and time investment at any
time, given that news texts are associated with public economic perceptions.

Therefore, our proposed method has the potential to contribute to several ar-
eas of future research. Firstly, the proposed text-mining technique is applicable
to a wide range of subjects to measure the narrative information in a rapid and
cost-effective manner. TFIs can complement existing survey indices and serve as
supplementary indices themselves based on observational studies. Secondly, the
proposed framework for forecasting near-term gross domestic product(GDP) pro-
vides an approach to develop a real-time statistical model to leverage timely news
information into econometric prediction. This framework, automated through a
web-scraping program and text-mining algorithm, can be effectively utilized to
combine narrative information with existing sources, enabling timely predictions.

The remainder of this paper is organized as follows: Section 2 provides an
overview of relevant literature. Following Section 3 presents the proposed method
in detail, covering data collection, the text-mining method used to create text
indicators, and the text-enhanced factor model. In Section 4, we analyze the
empirical results of the proposed indices and the model incorporating text infor-
mation. Finally, Section 5 summarizes the implications of this paper and provides
avenues for future research.

II. Related Works

Economic analysis using text has been actively conducted since the mid-2010s,
utilizing sources such as news texts (Baker et al., 2016; Lee et al., 2019; Shapiro
et al., 2022; Seo et al., 2022) that reflect press opinion, social media and search
information (Sun et al., 2016) that communicates public view, and corporate
accounting and evaluation reports (Lewis and Young, 2019; Seo, 2023) for indus-
trial information. Most studies analyze texts using sentiment analysis and topic
modeling based on a lexical approach or statistical model. In recent years, there
are research utilizing more complex models like neural networks (Hájek and Olej,
2013; Seo et al., 2022). Text is unstructured data, and there is virtually no limit
to the range of information it can convey. Therefore, existing studies have ana-
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lyzed text to predict market prices such as inflation and stock prices (Kalamara
et al., 2022; Li et al., 2020), identify new economic information such as crisis
indicators and uncertainty indicators (Li et al., 2009; Baker et al., 2016; Caldara
and Iacoviello, 2022), detect fraud (Humpherys et al., 2011), corporate sustain-
ability classification (Te Liew et al., 2014), credit scoring (Yap et al., 2011), and
for various other purposes.

For Korean text, the Bank of Korea is leading the use of text data for economic
analysis. Lee et al. (2020) calculated the monetary policy surprise index through
news text analysis, and Seo et al. (2022) developed a news sentiment index of
Korea using a state-of-the-art transformer model. Besides news data, various text
analyses, such as using analyst reports (Seo, 2023), are also being attempted in
Korea.

Certainly, both new data and models are crucial for generating unprecedented
insights in economic forecasting. Alongside new data such as text, recent ad-
vancements in statistical models and machine learning techniques have played a
pivotal role in overcoming various challenges, such as enabling the utilization of
ultra-high-dimensional data in forecasting.

Dynamic Factor Model (DFM) (Bańbura et al., 2010, 2013; Bok et al., 2018)
has been gaining growing popularity for nowcasting, as it can handle more vari-
ables than samples by utilizing unsupervised factor analysis. Using the factor
analysis and EM algorithm, DFM can predict a large number of variables si-
multaneously, and incorporate mixed frequency data (Mariano and Murasawa,
2010).

The real-time prediction has been explored using a range of machine-learning
models as well, including kernel quantile regression for private consumption
(Shin and Seo, 2022), k-nearest neighbor regression and support vector regres-
sion (SVR) for GDP (Richardson et al., 2021), and neural networks for global
merchandise trade exports (Hopp, 2022).

III. Data and Methodology
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1. Preparing Texts

Using web-scraping techniques, we collected economic news articles posted
on the internet news portal sites in Korea after January 2005. Our web-scraping
method automatically downloads publicly available news articles and constructs
a news database every morning. The method was built using Python program-
ming language to automate the entire process of collecting news articles and
generating TFI textual information without human intervention. The collected
data consists of approximately 4,000 articles per weekday, which corresponds to
about 1 million articles per year (in total, 18,343 thousand articles between Jan-
uary 2005 and December 2022) from 79 media companies. Overall, the dataset
encompasses about 207 million sentences and 3.5 billion words.2)

2. Topic Selection

In order to extract information from text effectively, it is crucial to define
specific topics that need to be extracted and select an appropriate extraction
method. If the topic is too general, the extracted information may lose its value,
while if it is too specific, the information may not be present in the text.

We selected text topics across 15 sectors, covering major macroeconomic vari-
ables and industry-related micro variables (as shown in Table 3). The selection of
these topics was based on their predictive importance for the GDP of Korea, with
the understanding that news information can be collected at any time and used
as a supplementary source when official statistics are not available. In addition
to the 15 sector text indicators, we also utilized the news sentiment index (NSI)
of Korea (Seo et al., 2022) and the economic policy uncertainty (EPU) index.
The NSI was obtained from the Bank of Korea’s Economic Statistics System

2) The configuration of the database is as follows.

Provider Num. of articles Examples
Economic newspapers 10.8m (59.0%) Money Today, Asia Economics, EDAILY, etc.
News agencies 4.8m (26.1%) Yonhap News, Newsis, News1, etc.
Regular news 2.5m (13.8%) Segye Ilbo, Donga Ilbo, Kyunghyang Shinmun, etc.
Others 0.2m (1.1%) Shindonga, Jungang Sunday, etc.
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Figure 3. Information extraction and synthesis procedure from news text data.

Table 2. Two main approaches for information extraction and synthesis.
Statistical Models

(Machine Learning)
Human Intuition

(Rule-Based)
• Algorithm finds patterns from data. • Human defines patterns based on intuition.
• Statistical models are better at finding re-

lationships between given multiple vari-
ables within a finite dataset.

• Human intuition can excel at identifying
topics that are indirectly connected with
the help of prior knowledge.

(ECOS), while the monthly EPU indices were calculated by us using the same
news database used for the 15 text indices, following the methods of Baker et al.
(2016) and Lee et al. (2020).

3. Choice of Information Extraction Method

Once the topic has been selected, an appropriate extraction method must be
chosen. There are two types of text extraction methods: stochastic approaches
that use statistical models (such as machine learning), and rule-based approaches
that use human-defined extraction conditions. The choice of method depends on
the nature of the source of the text data and the topic of the information being
extracted from the text.

In general, statistical models tend to have better accuracy than rule-based
methods when dealing with unstructured text data sources and abstract topics.
This is because there are countless expressions people can use to describe an ab-
stract topic in unstructured texts, as found, for example, in capturing economic
sentiment from colloquial social media texts. In contrast, if the texts are rela-
tively formal, such as news texts, and the topic of interest is specific, rule-based
methods can offer competitive accuracy. For instance, describing the direction of
inflation is relatively easier to define narrative patterns because there are formal-
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ized expressions frequently used by news journalists. Inflation is often associated
with verbs like rise, increase, surge, spike, escalate, and climb. These patterns
are even more apparent in the Korean language, which heavily relies on verbs
originating from Chinese characters for formal writing.

More importantly, adopting the rule-based method eliminates the need to con-
struct expensive labeled data and requires minimal preprocessing steps, resulting
in computationally efficient text analysis. In general, statistical models require
text standardization through tokenization, normalization, removal of stopwords,
and integer embedding. This is because statistical models require input of all text
characters and the transformation of text tokens to standard forms to recognize
meaning even when the words have different conjugations. In contrast, by using
only the root part of words3), the rule-based model can quickly check for the
presence of the selected patterns without the need for pre-processing steps. As a
result, we analyze the news text by applying human-defined rules that identify
the subject and predicate components of word patterns.

4. News Sentence-Based Theme Frequency Index

News sentence-based Theme Frequency Index (TFI) is defined by the relative
frequency of a certain topic appearing in news articles. TFI is measured based on
sentences rather than articles. That is, if an article includes a sentence matching
a theme, the article is added to the count to compute the frequency. Let Ωt =

{A(t)
1 , · · · ,A(t)

Nt
} be the set of Nt news articles at time t for articles A(t)

i , i = 1, · · · ,Nt ,
and let each news article A(t)

i = {S(t)i1 , · · · ,S
(t)
iMi

} be the set of sentences, S(t)im , m =

1, · · · ,Mi, for Mi being the length of sentence in i-th article. Then, for the word
groups for a certain topic, W [k] = {w[k]

1 , · · · ,w[k]
Lk
}, k = 1, · · · ,K, and the topic words

3) In Korean, the root part of a predicate typically maintains its fixed form as a stem and is
concatenated with various endings for conjugation. This is especially noticeable in formal writ-
ing, where words originating from Chinese characters are more commonly used. Similarly, in
English, the same approach can be taken by using the non-changing parts of a word for con-
jugation and considering additional cases for short words.
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belonging to the group k, w[k]
l , l = 1, · · · ,Lk, TFI is computed as follows.

C(t)
im =

K

∏
k=1

Lk∨

l=1

I
S(t)im

(w[k]
l ), (1)

Â(t)
i =

Mi∨
m=1

C(t)
im , (2)

T FIt =

Nt
∑

i=1
, Â(t)

i

Nt
(3)

where IS(w)=

{
1, if w ∈ S

0, o.w.
is an indicator function, and

M∨
m=1

Cm =max(C1, · · · ,CM)

is an elementwise max function.
When the topic consists of both positive and negative opinions, it is better

to compute them separately and generate the TFI by subtracting TFI computed
with negative words from TFI with positive words.

T FIt = T FI(pos)
t −T FI(neg)

t (4)

Table 3 describes the subject-predicate word groups used for each of the 15 sec-
tors. Initially, these word groups were selected based on expressions commonly
used in news articles to describe the economic direction of each topic. Then, in
order to decide whether to use words without considering direction or with direc-
tion, the corresponding TFIs were computed using the chosen word groups and
compared to official statistics for each sector (as presented in Table 5 and Figure
5). The final word groups were chosen by examining the Pearson’s correlation
between TFIs and official statistics. For House Construction and Government
Expenditure, word groups without direction were used while directional word
groups were used for the other sectors. This result is reasonable because news
articles typically report the start of house construction and government expen-
diture when they occur. In contrast, for the other topics, the direction of change
is also mainly covered by news articles rather than just reporting the occurrence.
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Table 3. Subjective-predicate patterns used to compute 15 sector text indices.
Topic Topic Words

Industry

Product |(product 생산), (rise 상승, increase 늘, skyrocket 급등, grow 증가, improve
개선, accelerate 가속)| − |(product 생산), (fall 하락, decrease 줄, drop 급락,
shrink 감소, worsen 악화, slowdown 둔화)|

Shipbuilding |(ship 선박), (order 수주), (rise 상승, increase 늘, skyrocket 급등, grow 증가,
improve 개선) | − |(ship 선박), (order 수주), (fall 하락, decrease 줄, drop
급락, shrink 감소, worsen 악화) |

Automotive |(car 자동차, automotive 승용차), (rise 상승, skyrocket 급등, grow 증가, im-
prove 개선, accelerate 가속)| − |(car 자동차, automotive 승용차), (fall 하락,
drop 급락, shrink 감소, worsen 악화, slowdown 둔화) |

Semiconductor |(semiconductor 반도체), (rise 상승, skyrocket 급등, grow 증가, improve 개
선, accelerate가속)| − |(semiconductor반도체), (fall하락, drop급락, shrink
감소, worsen 악화, slowdown 둔화) |

Facilities Investment |(facility investment 설비투자, r&d R&D), (rise 상승, skyrocket 급등, grow
증가, improve 개선, accelerate 가속, increase 늘, expand 확대)| − |(facility
investment 설비투자, r&d R&D), (fall 하락, drop 급락, shrink 감소, worsen
악화, slowdown 둔화, decrease 줄, reduce 감축) |

House Construction |(house 주택, apartment 아파트), (construct 건축, build 건설, construction
착공, construction 시공) |

Employ-
ment

Unemployment |(unemployment 실업), (rise 상승, increase 늘, grow 증가, worsen 악화)|
− |(unemployment 실업), (fall 하락, decrease 줄, shrink 감소, improve 개선)
|

Recruitment |(recruitment 채용, hiring 고용), (rise 상승, increase 늘, grow 증가, improve
개선)|
− |(recruitment채용, hiring고용), (fall하락, decrease줄, shrink감소, worsen
악화) |

Job Search |(employment 취업, job search 구직), (rise 상승, increase 늘, grow 증가)|
− |(employment 취업, job search 구직), (fall 하락, decrease 줄, shrink 감소)
|

Wholesale and Retail |(wholesale 도매, retail 소매, wholesale and retail 도소매), (rise 상승, sky-
rocket 급등, grow 증가, improve 개선, accelerate 가속, increase 늘)| −
|(wholesale 도매, retail 소매, wholesale and retail 도소매), (fall 하락, drop
급락, shrink 감소, worsen 악화, slowdown 둔화, decrease 줄) |

Government Expenditure |(government 정부), (support 지원, subsidy 보조, expenditure 지출) |
Inflation Outlook |(inflation 물가), (forecast 전망, predict 예측, expect 예상), (rise 상승, sky-

rocket 급등, go up 올라, high 높)| − |(inflation 물가), (forecast 전망, predict
예측, expect 예상), (fall 하락, drop 급락, go down 내려, low 낮) |

Stock Price Outlook |(kospi 코스피, kosdaq 코스닥, stock price 주가, stock 주식), (forecast 전망,
predict 예측), (rise 상승, grow 증가, improve 개선, increase 늘, high 높)| −
|(kospi 코스피, kosdaq 코스닥, stock price 주가, stock 주식), (forecast 전망,
predict 예측), (fall 하락, shrink 감소, worsen 악화, decrease 줄, low 낮) |

House Price Outlook |(house주택, apartment아파트), (price가격, selling price매매가, lease price
전세가, presale price 분양가), (forecast 전망, predict 예측), (rise 상승, sky-
rocket 급등, expand 확대, improve 개선, accelerate 가속, high 높)| − |(house
주택, apartment 아파트), (price가격, selling price 매매가, lease price 전세가,
presale price 분양가), (forecast 전망, predict 예측), (fall 하락, drop 급락,
reduce 축소, worsen 악화, slowdown 둔화, low 낮) |

World Trade |(global 글로벌, world 세계), (trade 교역, trade 무역, export 수출, import
수입), (rise 상승, skyrocket 급등, grow 증가, improve 개선, accelerate 가속,
increase 늘, expand 확대)| − |(global 글로벌, world 세계), (trade 교역, trade
무역, export 수출, import 수입), (fall 하락, drop 급락, shrink 감소, worsen
악화, slowdown 둔화, decrease 줄, reduce 축소)

Notes: To apply this method to English, it is recommended to use different groups of words, as the English
words used are direct translations of the corresponding Korean words. The elements in | · |, denoted by a (·),
indicate each word group, W [k], for k = 1, ...,K, and those in (·) are the topic words, w[k]

l , for l = 1, · · · ,Lk. The
word groups before and after − indicate the keywords patterns for T FI(pos) and T FI(neg) respectively.
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Recruitment |(recruitment 채용, hiring 고용), (rise 상승, increase 늘, grow 증가, improve
개선)|
− |(recruitment채용, hiring고용), (fall하락, decrease줄, shrink감소, worsen
악화) |

Job Search |(employment 취업, job search 구직), (rise 상승, increase 늘, grow 증가)|
− |(employment 취업, job search 구직), (fall 하락, decrease 줄, shrink 감소)
|

Wholesale and Retail |(wholesale 도매, retail 소매, wholesale and retail 도소매), (rise 상승, sky-
rocket 급등, grow 증가, improve 개선, accelerate 가속, increase 늘)| −
|(wholesale 도매, retail 소매, wholesale and retail 도소매), (fall 하락, drop
급락, shrink 감소, worsen 악화, slowdown 둔화, decrease 줄) |

Government Expenditure |(government 정부), (support 지원, subsidy 보조, expenditure 지출) |
Inflation Outlook |(inflation 물가), (forecast 전망, predict 예측, expect 예상), (rise 상승, sky-

rocket 급등, go up 올라, high 높)| − |(inflation 물가), (forecast 전망, predict
예측, expect 예상), (fall 하락, drop 급락, go down 내려, low 낮) |

Stock Price Outlook |(kospi 코스피, kosdaq 코스닥, stock price 주가, stock 주식), (forecast 전망,
predict 예측), (rise 상승, grow 증가, improve 개선, increase 늘, high 높)| −
|(kospi 코스피, kosdaq 코스닥, stock price 주가, stock 주식), (forecast 전망,
predict 예측), (fall 하락, shrink 감소, worsen 악화, decrease 줄, low 낮) |

House Price Outlook |(house주택, apartment아파트), (price가격, selling price매매가, lease price
전세가, presale price 분양가), (forecast 전망, predict 예측), (rise 상승, sky-
rocket 급등, expand 확대, improve 개선, accelerate 가속, high 높)| − |(house
주택, apartment 아파트), (price가격, selling price 매매가, lease price 전세가,
presale price 분양가), (forecast 전망, predict 예측), (fall 하락, drop 급락,
reduce 축소, worsen 악화, slowdown 둔화, low 낮) |

World Trade |(global 글로벌, world 세계), (trade 교역, trade 무역, export 수출, import
수입), (rise 상승, skyrocket 급등, grow 증가, improve 개선, accelerate 가속,
increase 늘, expand 확대)| − |(global 글로벌, world 세계), (trade 교역, trade
무역, export 수출, import 수입), (fall 하락, drop 급락, shrink 감소, worsen
악화, slowdown 둔화, decrease 줄, reduce 축소)

Notes: To apply this method to English, it is recommended to use different groups of words, as the English
words used are direct translations of the corresponding Korean words. The elements in | · |, denoted by a (·),
indicate each word group, W [k], for k = 1, ...,K, and those in (·) are the topic words, w[k]

l , for l = 1, · · · ,Lk. The
word groups before and after − indicate the keywords patterns for T FI(pos) and T FI(neg) respectively.
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5. Forecasting Models Utilizing Textual Information

5.1. Text-Enhanced Factor Model

We utilize the Dynamic Factor Model (DFM) structure, which is capable of
handling mixed frequency data, and incorporate TFIs to each factor of DFM
that corresponds to macroeconomic segments such as production, the external
market, investment, labor market, and others, as shown in Table 4. This setup
enables us to utilize textual information at the ragged edge point, where official
statistics are not yet available for each sector.

For q latent factors at time t, ft , and p-dimensional vector of the observed
variables, Xt , the Text-enhanced Factor Model (TFM) is defined by the usual
dynamic factor model with two linear functions.

Xt = Λ ft + εt (5)

ft = ψ(L) ft−1 +ηt (6)

εi,t = ρiei,t−1 + ei,t (7)

ei,t ∼ N(0,σ2
i ) (8)

ηt ∼ N(0,Σ) (9)

where L is lag operator, and Λ∈Rp×q is the matrix of factor loadings, and ψ(L)∈
Rq×q is r-th order polynomial coefficients, and εt ∈Rp is idiosyncratic disturbance
with ρi ∈ R and σ2

i ∈ R for i = 1, · · · , p, and ηt ∈ Rq is factor innovation with
Σ ∈ Rq×q.

In this research, we consider two overall factors combining all variables and
13 sector-specific factors composed of corresponding variables (see Table 4). A
total of 83 variables are utilized, comprising 69 monthly variables and 14 quar-
terly variables. These include 52 official statistics, 14 financial indices, and 17

text indices that comprise 15 TFIs, NSI, and EPU. The financial and textual
indices have no lags and are readily available, while the availability of official
indices varies depending on the forecasted time. To capture the characteristics of
the variables, we used year-over-year and month-over-month growth rates. For
variables available in both seasonally adjusted (SA) and not-seasonally adjusted
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Figure 4. CRNN structure designed for mixed frequency data.

(NSA) forms, we used month-over-month transformation for SA variables and
year-over-year transformation for NSA variables. For variables released without
seasonal adjustment, we applied X-13 ARIMA SEATS from Census Bureau(Sax
and Eddelbuettel, 2018) and transformed them into month-over-month growth
rates before using them. Consistent with previous studies, we employed an AR(4)
structure for the two overall factors and an AR(1) structure for the other 13

sector-specific factors. For the observed variables, we used AR(1) structure for
the idiosyncratic disturbance.

To train TFM, it is crucial to organize the training data in a proper way by
utilizing the available information, using vintage data, which contains statistics
with different release cycles and lags. To resolve this mixed frequency and ragged
edge problems in the training of TFM, the missing values are imputed using
the Kalman filter(Seabold and Perktold, 2010). Please refer to Mariano and
Murasawa (2010) for more details.

5.2. Convolutional Recurrent Neural Networks (CRNN) with TFIs

It is important to choose an appropriate forecasting model that takes into
account the characteristics of text data. Text indicators, which quantify various
nuances, may contain more noise than official statistics and may be difficult to
interpret for trend and periodicity. Although they are quantitative measures of
media interest and do not exhibit obvious non-stationarity, such as upward trends
(see Figure 5), they show high volatility and it is challenging to distinguish noise
from economic signals. Therefore, using a linear model may result in increased
prediction errors, while using a non-linear model may lead to overfitting errors
by fitting noise. In light of these challenges, this study examines the predictive
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Table 4. All variables and factors for Text-enhanced Factor Model.
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GDP(SA)(Q) V
GDP(NSA)(Q) V
Private consumption(SA)(Q) V
Government consumption(SA)(Q) V
Construction(SA)(Q) V
Facility investment(SA)(Q) V
Exports of goods and services(SA)(Q) V V
Imports of goods and services(SA)(Q) V V
Private consumption(NSA)(Q) V
Government consumption(NSA)(Q) V
Construction(NSA)(Q) V
Facility investment(NSA)(Q) V
Exports of goods and services(NSA)(Q) V V
Imports of goods and services(NSA)(Q) V V
Unemployment rate V
Employment to population ratio V
Number of employed people V
Monthly goods exports V V
Monthly goods imports V V
Export price index V V V
Import price index V V V
Producer price index V V
Consumer price index V V
Price index excluding agricultural product & oil V
Price index excluding food & energy V
Consumption & Retail sales index(SA) V
Service industry production index(SA) V V
Consumption & Retail sales index(NSA) V
Service industry production index(NSA) V V
Manufacturing industry production index(SA) V
Manufacturing industry shipment index(SA) V
Manufacturing inventory index(SA) V
Manufacturing industry production index(NSA) V
Manufacturing industry shipment index(NSA) V
Manufacturing inventory index(NSA) V
Facility investment index(SA) V
Construction completed(SA) V
Facility investment index(NSA) V
Construction completed(NSA) V
Manufacturing business performance BSI(SA) V V
Manufacturing business performance BSI(NSA) V V
All industries performance BSI V V
Service industry performance BSI V V
All industries sales BSI V V
Manufacturing export BSI V V
Manufacturing domestic demand sales BSI V V
Manufacturing new orders BSI V V
Manufacturing operation rate BSI V V
Economic sentiment index V
Current economic judgment CSI V
Consumer sentiment index V V
Consolidated fiscal balance V
Housing sales price index(HSPI)-Seoul V
Housing sales price index(HSPI)-National V
Housing lease price index(HLPI)-Seoul V
Housing lease price index(HLPI)-National V
Call rate V
CD rate V
KTB 3-year rate V
KRW exchange rate V V
EUR exchange rate V V
KOSPI V
KOSDAQ V
Dubai crude oil V
WTI futures V
Gold futures V
News sentiment index(T) V
Economic policy uncertainty(T) V
Production(T) V
Shipbuilding(T) V
Automotive(T) V
Semiconductor(T) V
Facility investment(T) V
Construction(T) V
Unemployment(T) V
Recruitment(T) V
Job search(T) V
Wholesale & retail(T) V
Government expenditure(T) V
Price outlook(T) V
Stock price outlook(T) V
House price outlook(T) V
World trade(T) V

Notes: Variables with a (T) mark indicate that they are computed from text data and (Q) mark indicates
quarterly variables. In total, 83 variables are used with 69 monthly and 14 quarterly variables, consisting
of 52 official statistics and 14 financial indices, and 17 text indices.
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effectiveness of both linear and non-linear models for text indicators.
In addition to using TFM, which is a linear model, we also constructed a Con-

volutional Recurrent Neural Network (CRNN) as a non-linear model to compare
its predictive accuracy using textual information. The CRNN consists of 64 con-
volutional filters applied in 3-month intervals, followed by a Long Short-Term
Memory (LSTM) layer consisting of 32 units. The convolutional layer helps es-
timate direct relationships between observed variables, while the LSTM layer
incorporates time-series characteristics into the model. Additionally, the CRNN
model was designed to handle mixed-frequency data by aggregating monthly and
quarterly data points into quarterly intervals using convolutional filters. Unlike
TFM, which uses an unsupervised setup with latent factors and autoregressive
structure to predict all observed variables simultaneously, CRNN was designed
for a supervised setup specifically to predict GDP using all other variables.

For p-dimensional vector of input variables, Xt , and the target variable, y,
CRNN consists of the following layers:

• Convolutional Layer:

Zt∈Tq = σ(WkXt∈Tq +bk). (10)

• Long Short-Term Memory Layer

fq = σ(Vf Zq +Uf hq−1 + e f ), (11)

iq = σ(ViZq +Uihq−1 + ei), (12)

oq = σ(VoZq +Uohq−1 + eo), (13)

c̃q = σ̃(VcZq +Uchq−1 + ec), (14)

cq = fq ◦ cq−1 + iq ◦ c̃q, (15)

hq = oq ◦σ(ct). (16)

• Feed-forward Layer

Z′
q = σ(W ′

j cq +b′j), (17)

yq = W ′′Z′
q +b′′. (18)



15 BOK Working Paper No. 2023-10

where σ() is the ReLu function, i.e., element-wise max(0,x), σ̃ is hyperbolic
tangent function, and ◦ is the Hadamad product, i.e., element-wise product.
Wk ∈ Rp×3 and bk ∈ R are the kernel weights and bias for convolutional layer for
k = 1, · · · , k̃ with the number of convolutional filters k̃ = 64. V ∈ Rh×k̃,U ∈ Rh×h

and e ∈ Rh are the weights and bias for LSTM layer for h = 32 indicating the
number of hidden units. W ′ ∈Rh×d ,W ′′ ∈Rd ,b′ ∈Rd , and b′′ ∈R are the weights
and bias for the feed-forward (FF) layers with the number of hidden unit of FF
layer d = 4. Within LSTM layer, f , i, and o represent the forget, update, and
output gates respectively. c and h denote the cell and hidden state vectors.

Tq = {ti−2, ti−1, ti} is the index set of the quarter q that indicating 3 continuous
months in quarter q. That is, for X ∈ Rp×T , the kernel Wk is applied for every
3 month sliding through the input X and striding with 3 month time windows.
These convolutional filters produce distinct bridge equations. In order to address
the issue of ragged edges, we impute missing values that were not available during
analysis with the most recently available data.

IV. Empirical Analysis

1. Validation of Theme Frequency Indices

One advantage of computing TFIs by sector is that their validity can be
verified by comparing them to relevant official statistics. As shown in Table 5
and 6, TFIs have a high correlation with and tend to lead the corresponding
official statistics. Some TFIs exhibit interesting characteristics in Figure 5 and
Table 5, as outlined below:

• Most TFIs (excluding some) show that it is leading official statistics based
on the cross-correlation and Granger causality test. Whether the text index
leads or not varies by sector. A hypothesis is that the text sector that
consists of expert opinions more than mere conveyance of released statistics
tends to precede official statistics, which are the sectors with broader topics
and having more attention from the public.

• Text-based TFIs tend to fluctuate in short periods indicating it includes
noise, yet obvious outliers do not appear because it is an index quantifying
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the attention of people. For house construction, the official statistic, which
is based on surveying, shows more apparent outliers.

• For government expenditure TFI, the time lag that shows the maximum
cross-correlation between the TFI and consolidated fiscal balance is 3 months,
with the TFI leading. This is noteworthy because the official statistic is re-
leased with a 3-month delay.

• Regarding inflation outlook TFI, analysis of data from January 2006 to
December 2022 shows that the maximum cross-correlation between TFI
and CPI is 0.78, with TFI leading by 2 months. However, if we limit the
data to January 2006 to December 2021, the maximum cross-correlation
time lag increases to 5 months, with a value of 0.75. This may be due to
the challenging environment of predicting inflation in 2022.
When we compute the index without using words such as ’forecast 전망’,
’predict예측’, or ’expect예상’ both including and excluding the 2022 data,
the time lag remains at 2 months with TFI leading, with a slight higher
correlation of 0.82 and 0.77, respectively.

• To compute the inflation, stock price, and house price outlook TFIs, we
included the words ’forecast 전망’ and ’predict 예측’. These TFIs have time
lags with the maximum cross-correlation occurring at 2, 3, and 10 months,
respectively. This finding aligns with our expectations given the forecasting
horizons of interest, which are relatively short (around 1 to 3 months) for
stock prices and inflation, and relatively long (around half to a year) for
housing prices. This outcome is reasonable considering that TFIs reflect
the opinions and forecasts of the field experts as expressed in news articles.

Table 5 and 6 demonstrate TFIs for each topic are useful as leading indicators
for the corresponding sector and can be used on their own to identify trends in the
sector. Therefore, one potential application of TFIs is to use them as instrumental
variables (IV) to measure public interest of each topic. TFIs can be employed as
IV in non-experimental research to address endogeneity issues. Figure 5 provides
detailed time series comparisons between TFIs and official statistics, and Figure
7 shows the ±6 month cross-correlations between them.
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Figure 5. Time series plots of 15 sector text indices.

(a) . Production (b) . Shipbuilding (c) . Automotive

(d) . Semiconductor (e) . Capital Investment (f) . House Construction

(g) . Unemployment (h) . Recruitment (i) . Job Search

(j) . Wholesale and Retail (k) . Government Expenditure (l) . Price Outlook

(m) . Stock Price Outlook (n) . House Price Outlook (o) . World Trade

(p) . News Sentiment Index (q) . Econ. Policy Uncertainty
Notes: Text-based economic indicators (red lines) and their relevant official statistics (blue lines)
between January 2005 and December 2022 exhibit similar trends to each other.
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Figure 7. Cross-correlation plots between 15 sector text indices and their
corresponding official statistics.

(a) . Production (b) . Shipbuilding (c) . Automotive

(d) . Semiconductor (e) . Capital Investment (f) . House Construction

(g) . Unemployment (h) . Recruitment (i) . Job Search

(j) . Wholesale and Retail (k) . Government Expenditure (l) . Price Outlook

(m) . Stock Price Outlook (n) . House Price Outlook (o) . World Trade

(p) . News Sentiment Index (q) . Econ. Policy Uncertainty
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Table 5. Max leading lags and cross-correlation in the max lag between TFIs and official
statistics.

Topic Related Official Stat. Max Leading
Lag & Corr.

Industry

Product Cyclical component of leading index (KOSTAT) 0 / 0.72
Shipbuilding Ship orders in CGT (Clarkson Research) 4 / 0.55
Automotive Car sales in units (KAA) -1 / 0.51
Semiconductor Semiconductor exports (IITP) -2 / 0.62

Facilities Investment Equipment investment index (KOSTAT) -1 / 0.47
House Construction Housing construction (MLIT) 0 / 0.46

Employ-
ment

Unemployment Unemployment rate (KOSTAT) 1 / 0.32
Recruitment Employment to population ratio (KOSTAT) -1 / 0.58
Job Search Number of employed (KOSTAT) 1 / 0.56

Wholesale and Retail Service industry survey - W&R (KOSTAT) 1 / 0.46
Government Expenditure Government fiscal balance (MOEF) -3 / 0.69
Inflation Outlook Consumer price index (KOSTAT) -2 / 0.78
Stock Price Outlook KOSPI closing price (KRX) -6 / 0.64
House Price Outlook House price index (Korea real estate board) -10 / 0.34
World Trade World merchandise trade volume (OECD) -3 / 0.65
News Sentiment Index Economic sentiment index (BOK) -1 / 0.59
Econ. Policy Uncertainty VKOSPI index (KRX) 0 / 0.54

Notes: The calculations are performed from January 2006 to December 2022. Max leading lags
indicate the cross-correlation has the maximum value in the month between the text index and
corresponding official statistics where the text index is leading.
KOSTAT: Korean Statistics, KAA: Korea Automobile Association, IITP: Institute of Information
& communications Technology Planning & Evaluation, MLIT: Ministry of Land Infrastructure and
Transport in Korea, MOEF: Ministry of Economy and Finance, KRX: Korea Exchange, OECD:
Organization for Economic Cooperation and Development, BOK: Bank of Korea.
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Table 6. Granger causality tests between TFIs and official statistics.
Topic Offi. Stat.→Text Text→Offi. Stat. Direction

Industry

Product 3.428 (0.001)** 1.538 (0.138) Stat.→Text
Shipbuilding 2.884 (0.010)* 2.055 (0.059) Stat.→Text
Automotive 1.917 (0.052) 4.694 (0.000)** Text→Stat.
Semiconductor 2.414 (0.017)* 2.626 (0.010)* Bidirectional

Facilities Investment 4.759 (0.010)* 4.323 (0.015)* Bidirectional
House Construction 0.082 (0.775) 6.931 (0.009)** Text→Stat.

Employ-
ment

Unemployment 3.489 (0.017)* 0.631 (0.596) Stat.→Text
Recruitment 3.460 (0.033)* 9.165 (0.000)** Text→Stat.
Job Search 14.247 (0.000)** 0.521 (0.668) Stat.→Text

Wholesale and Retail 6.626 (0.000)** 1.276 (0.284) Stat.→Text
Government Expenditure 3.149 (0.006)** 6.663 (0.000)** Bidirectional
Inflation Outlook 0.102 (0.750) 30.557 (0.000)** Text→Stat.
Stock Price Outlook 0.391 (0.815) 1.829 (0.125) Not sig.
House Price Outlook 1.609 (0.189) 1.346 (0.261) Not sig.
World Trade 1.264 (0.281) 3.846 (0.002)** Text→Stat.
News Sentiment Index 2.288 (0.080) 7.303 (0.000)** Text→Stat.
Econ. Policy Uncertainty 1.103 (0.349) 4.498 (0.004)** Text→Stat.

Notes: The calculations are performed from January 2006 to December 2022.
*, ** indicate that Granger statistics are significant with α = 0.05,0.01

2. Forecasting Results with Text-Enhanced Factor Model

2.1. Validation of Predictive Accuracy Improvement through Textual
Information

This subsection aims to examine how incorporating textual information in
economic forecasting models affects their predictive accuracy. Figure 9 illustrates
different forecasting scenarios. In this study, we focus on predicting GDP for the
current and following quarters with predictions made at the end of each quarter.

To evaluate the testing error of predicting GDP growth, we computed both
the mean absolute error (MAE) and the root mean square error (RMSE) for
out-of-sample predictions from the first quarter of 2016 to the fourth quarter of
2022. Specifically, we made recursive predictions for the seasonally adjusted GDP
quarter-over-quarter growth and non-seasonally adjusted GDP year-over-year
growth rates for the current and following quarters using the available vintage
data at the end of the current quarter. To distinguish the impact of adding textual
information from the impact of model selection on accuracy improvement, we



21 BOK Working Paper No. 2023-10

Figure 9. Nowcasting and forecasting situations

Notes: The variables are categorized as follows based on their release delay.

- OS-2: official statistics released in two months - Retail sales index.

- OS-1: official statistics released in a month: Unemployment rate, Employment to popula-
tion ratio, Number of employed people, Export price index, Consumer price index, Price
index excluding agricultural product & oil, Price index excluding food & energy, Producer
price index, Facility investment index, Manufacturing production index, Manufacturing
industry shipment index, Manufacturing inventory index, Service industry production in-
dex, National accounts (GDP, Private consumption, Construction, Facility investment,
Exports of goods and services).

- OS-0: official statistics available at the end of the month: All industries sales BSI, All
industries performance BSI, Manufacturing export BSI, Manufacturing operation rate BSI,
Manufacturing new orders BSI, Manufacturing domestic demand sales BSI, Manufacturing
business performance BSI, Economic sentiment index, Current economic judgment CSI,
Consumer sentiment index, Housing sales price index (Seoul, National), Housing lease price
index (Seoul, National), Call rate, CD rate, 3-year Korean treasury bond rate, Exchange
rates, KOSPI, KOSDAQ, VKOSPI, Dubai crude oil, WTI futures, gold futures.

- NE: 15 sector text indices, News sentiment index, and Economic uncertainty index.
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computed the testing accuracy in a cross-tabulation of both data and models,
as presented in Table 7. Additionally, we also explored smoothing techniques for
text indicators to improve the forecasting accuracy in Table 8.

Textual information, which quantifies public opinions expressed in news ar-
ticles, may contain noise and reflect various aspects of the economy. It can indi-
cate the level or change of an economic variable over the past month, the past
year, or a combination of both. Understanding these characteristics of textual
information, we examined the impact of smoothing and seasonal adjustments on
text indicators. To smooth the text indicators, we applied Hodrick and Prescott
(1997) filters with a frequency of 0.5, equivalent to using the modifying multi-
plier λ = 6.24 · (0.5)4 ≈ 0.391, and utilized the cycle components. We then em-
ployed X13 ARIMA from the United States Census Bureau to investigate the
seasonal effect and transformed them into month-over-month and year-over-year
growth rates. Table 8 shows that smoothing is crucial for forecasting GDP(SA)
quarter-over-quarter growth rates, but has little effect on predicting GDP(NSA)
year-over-year growth rates. For the remainder of this subsection, we focus on
nowcasting using HP-filtered and seasonally adjusted month-over-month growth
rates of the text indicators for predicting GDP(SA) and year-over-year trans-
formed text indicators for predicting GDP(NSA).

Based on the findings in Table 7, the inclusion of textual information enhances
the predictive accuracy of both linear and nonlinear models for both the current
and the following quarters. The effect of textual information on GDP(SA) QoQ
prediction of the current quarter is less obvious while GDP(NSA) YoY growth
of both the current and the following quarters and GDP(SA) QoQ growth for
the following quarter show the inclusion of textual information decreases the
predictive errors. TFM estimates its factor by utilizing both the observed in-
formation including textual information and the autoregressive structure of the
model. Hence, if the text indicators are suitable as the complementary variables
for each factor, the model’s fitness improves and the standard error of the pre-
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dictions decreases.4)

Additionally, in every case, TFM outperforms CRNN. One possible expla-
nation for the superiority of the relatively simpler linear model, TFM, over the
nonlinear model, CRNN, in predicting GDP could be attributed to the nature of
GDP, which is merely a linear sum of sub-segments. Hence, the nonlinear struc-
ture of the CRNN model may not be necessary and could lead to overfitting
errors, while the simpler linear model can provide more accurate predictions. In
general, neural networks have benefits when the target variable is not expressed
by a simple linear combination of inputs, and when new features synthesized
from the network supplement the original inputs’ insufficient information.

Furthermore, for CRNN, the model with official statistics shows inferior per-
formances compared to that with only text indicators. This can be attributed to
imputing missing values at ragged edges. CRNN extrapolates each missing ob-
servation using each individual time series separately. Hence, the CRNN with of-
ficial statistics relies on outdated information to extrapolate. In contrast, CRNN
with only text indicators and that with text-enhanced data can incorporate more
recent information using text. On the other hand, the TFM and DFM models im-
prove their predictions by imputing missing values with other observed variables
such as text during the estimation process using the EM algorithm.

Our analysis demonstrated that when utilizing solely text indicators, the
TFM’s forecast accuracy for GDP(SA) nowcasting was slightly lower than that
of DFM using solely official statistics. This outcome can be attributed to the lim-
ited number of text indicators, which only consist of 17 text indices. However,
despite this limitation, the TFM’s accuracy remains comparable to that of DFM,
indicating that there is a vast amount of economic forecasting information avail-
able from news sources. Furthermore, the prediction accuracy of major monthly
economic variables in TFM has been presented in Table 9. The improvement of
forecasting accuracy varies across variables. For monthly variables that are rela-

4) In comparable studies of GDP nowcasting during the COVID-19 pandemic, Lee et al. (2022)
achieved an MAE of 0.513 for GDP(SA) using XGBoost model with a fixed variable selection,
and an MAE of 0.429 with dynamic optimization variable selection based on 145 variables.
Additionally, Jung et al. (2022) achieved an RMSE of 0.99 and 0.87 for GDP(SA) using state-
of-the-art LSTM and GRU neural network models with recursive training, and an RMSE of
0.92 and 0.98 using rolling window training with these models based on 36 variables.
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Figure 11. Predicted GDP(SA) growth rates and their error.

(a) . Nowcasting GDP (b) . 1Q ahead forecasting GDP

(c) . Nowcasting error (d) . 1Q ahead forecasting error

tively timely and have ample available information, incorporating text indicators
have a lower impact on improving predictive power compared to quarterly GDP.

2.2. Exploring the Characteristics of the Text-Enhanced Factor Model

In this subsection, the forecast accuracy of TFM was examined for GDP year-
over-year growth rate by the end of March 2020, when the COVID-19 outbreak
began. Figure 12 demonstrates that TFM enhanced the prediction accuracy of
GDP in March 2020 in comparison to using only official statistics. This highlights
the value of utilizing textual information, particularly in scenarios where the eco-
nomic landscape changes rapidly and inadequate quantitative data is available.
Furthermore, the figure illustrates that incorporating textual information may
alter the mid-term forecasting trajectory for GDP by up to one and a half years
in the considered TFM.

Although, it is worth noting that evaluating machine learning models based
on their long-term forecasting performance is unreasonable, as it is difficult to
assume that the inputs contain information about the long-term forecast horizon,
even if a particular model shows lower prediction errors. In Figure 12, the reason
why the TFM forecast for the one-year horizon showed superior forecasting per-
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Table 7. Out-of-sample testing error with its std. dev. for predicting gross
domestic product (GDP(SA) and GDP(NSA))

Model
Data Nowcasting 1Q Ahead Forecasting

Offi. Stat. News text OS+NE Offi. Stat. News text OS+NE
• Prediction on GDP seasonally adjusted (SA) QoQ growth

M
A

E

AR 0.787 - - 0.880 - -
(.876) - - (.781) - -

CRNN 0.677 0.605 0.589 - - -
(.638) (.508) (.606) - - -

TFM† 0.495 0.529 0.476 0.656 0.547 0.598
(.419) (.674) (.494) (.749) (.648) (.497)

R
M

SE

AR 1.387 - - 1.385 - -
(3.265) - - (2.679) - -

CRNN 0.931 0.790 0.845 - - -
(1.801) (1.096) (2.097) - - -

TFM† 0.643 0.848 0.680 0.986 0.840 0.772
(.606) (2.029) (.895) (2.013) (1.618) (.940)

• Prediction on GDP non-seasonally adjusted (NSA) YoY growth

M
A

E

AR 1.000 - - 1.213 - -
(1.058) - - (1.504) - -

CRNN 0.953 0.950 0.902 - - -
(.975) (.775) (.877) - - -

TFM† 0.790 0.838 0.707 1.217 1.085 1.069
(.741) (.655) (.692) (.826) (.772) (.737)

R
M

SE

AR 1.456 - - 1.933 - -
(4.319) - - (9.953) - -

CRNN 1.364 1.226 1.258 - - -
(3.140) (2.356) (3.085) - - -

TFM† 1.074 1.064 0.989 1.417 1.332 1.299
(1.884) (1.797) (1.670) (2.429) (2.316) (2.037)

Notes: The calculation are performed between 2016.1Q and 2022.4Q for mean absolute error
(MAE) and root mean square error (RMSE).
† For the official-statistics-only model, the results have been obtained from DFM.

Table 8. Out-of-sample testing error with its std. dev. of TFM based on text index
transformation for predicting GDP(SA) and GDP(NSA).

Target
Trans. OS+NE

HP SA MoM
OS+NE
SA MoM

OS+NE
HP YoY

OS+NE
YoY Offi. Stat.

GDP(SA) 0.476 0.519 0.503 0.503 0.495
(Nowcasting) (.494) (.477) (.419) (.420) (.419)
GDP(NSA) 0.893 0.864 0.716 0.707 0.790
(Nowcasting) (.784) (.766) (.688) (.692) (.741)

Notes: The calculation are performed between 2016.1Q and 2022.4Q, measured by mean absolute
error (MAE).
HP: HP filtered. SA: seasonally adjusted. MoM: transformed with month-over-month growth. YoY:
transformed with year-over-year growth.
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Table 9. Out-of-sample testing error with its std. dev. of DFM and TFM for
predicting monthly variables.

Variable
Data Nowcasting 1M ahead FC 2M ahead FC

OS OS+NE OS OS+NE OS OS+NE
Unemployment rate 3.749 3.706 4.458 4.395 5.883 5.935

(2.926) (2.883) (2.583) (2.694) (4.645) (4.596)
Consumer price index 0.179 0.178 0.239 0.234 0.232 0.224

(0.129) (0.122) (0.185) (0.202) (0.156) (0.169)
Manufacturing prod. ind.(SA) 2.217 1.923 1.966 1.986 1.854 1.807

(2.354) (2.026) (1.303) (1.248) (1.592) (1.334)
Service industry prod. ind.(SA) 0.850 0.764 0.641 0.664 0.835 0.840

(1.069) (1.092) (0.554) (0.518) (0.661) (0.730)
Facility investment ind.(SA) 3.598 3.567 2.897 2.840 3.844 4.010

(2.468) (2.536) (1.795) (1.965) (2.692) (2.610)
Construction completed(SA) 2.348 2.387 2.297 2.383 3.130 3.068

(2.278) (2.38) (2.121) (2.246) (2.138) (2.213)
Housing sales price ind.-Nat. 0.178 0.150 0.109 0.125 0.188 0.156

(0.150) (0.145) (0.083) (0.085) (0.154) (0.160)
Notes: The calculation are performed between January 2016 and December 2022, measured by mean
absolute error (MAE).

formance compared to DFM could be attributed to the fact that the TFM model
anticipated a deeper trough in the following quarter, June 2020. The subsequent
forecast path was then determined by the autoregressive structure of the linear
factor model.

In Figure 14, we can see the coefficient of determination, R2, that each factor
has for each variable, x, in the vintage data as of March 2020.

R2
x =

∑(xt − x̂t)
2

∑(xt − x̄)2 (19)

x̂t = Λ̂ f̂t (20)

The figure allows us to analyze how each factor relates to the observed variables
by computing the explanatory power of each factor for each observed variable.
Overall-1 factor has the strongest relationship with most text indicators, and the
coefficient of determination of the text indicators for individual factors varies
depending on their respective factors.

Tables 10 display the variables that had the greatest impact on the change in
GDP forecast between December 2019 and March 2020. For the current quarter,
the first quarter of 2020, the change in forecast is primarily attributed to survey
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Table 10. The variables affecting the GDP(NSA) forecasts for the first and
second quarters of 2020.

Observed
Prev.

forecast News Weight
Impact
on GDP

•For forecasting the 1st quarter of 2020
2020-02 Economic sentiment index -10.00 1.21 -11.21 -0.02 0.18

Manufact. export BSI -10.78 1.29 -12.07 -0.01 0.18
Production(T) -0.36 0.21 -0.58 -0.20 0.12

2020-03 Government expenditure(T) 2.89 -0.10 2.99 0.04 0.11
Automotive(T) -0.35 0.22 -0.57 -0.18 0.10

2020-01 Manufact. ind. shipment(NSA) -6.99 2.15 -9.14 0.01 -0.10
Production(T) 0.03 0.25 -0.22 -0.45 0.10

2020-02 All industries sales BSI -8.98 0.80 -9.79 -0.01 0.10
All industries performance BSI -11.82 1.06 -12.88 -0.01 0.10

2020-01 Manufact. ind. shipment(SA) -4.44 0.29 -4.73 0.02 -0.08
•For forecasting the 2nd quarter of 2020
2020-03 Government expenditure(T) 2.89 -0.10 2.99 -2.01 -6.01
2020-02 Government expenditure(T) 1.62 -0.08 1.69 2.98 5.05

Production(T) -0.36 0.21 -0.58 -4.29 2.47
2020-03 Production(T) -0.72 0.17 -0.89 1.45 -1.29
2020-02 Automotive(T) -0.05 0.26 -0.30 -2.74 0.83

Wholesale & retail(T) -1.19 0.53 -1.72 -0.46 0.79
News sentiment index(T) -0.10 0.08 -0.17 -3.56 0.62

2020-03 Economic policy uncert.(T) 0.46 -0.06 0.52 -1.17 -0.61
Wholesale & retail(T) -2.39 0.43 -2.83 0.22 -0.61

2020-02 Economic policy uncert.(T) 0.18 -0.08 0.26 2.34 0.60
Notes: At the end of March 2020, the variables affecting the forecasted GDP (NSA) YoY growth
rate for the first and second quarters of 2020 were examined and compared to the values predicted
in December 2019. The majority of the new information used for the current and next quarters
forecast was derived from textual and survey variables.
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Figure 12. The GDP forecasting comparison between TFM and DFM during the
COVID-19 outbreak

Notes: The comparison was made in March 2020, when the COVID-19 outbreak occurred.
The DFM is based solely on official statistics, and the TFM is enhanced with textual
information.

indices and textual information, while for the subsequent quarter forecasting,
the second quarter of 2020, textual information has the greatest influence on the
change.

V. Discussion

This paper proposes a new method to generate news-text-based economic
indicators called Theme Frequency Indices (TFI), which reflect economic trends
across sectors. TFIs are computed using simple subject-predicate patterns of
word groups based on domain knowledge without any labeled data. By comput-
ing the text indicators across economic fields, the indices can be easily verified
and used as timely alternatives to their corresponding official statistics. Empirical
analysis demonstrates that TFIs computed using simple text-mining techniques,
along with domain knowledge, offer insights highly correlated with and preced-
ing official statistics. This is crucial because TFIs can help circumvent the costly
training procedure. Furthermore, this paper investigates suitable econometric
models to incorporate textual information into a forecasting model for the gross
domestic product (GDP) in Korea. A model structure incorporating TFIs into
separate factors has been proposed as Text-enhanced Factor Model (TFM) with
empirical examinations of its predictive accuracy and characteristics. The empir-
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Figure 14. The explanatory power, R2, that each factor has for each observed
variable.

Notes: The blue color in the visualization indicates that the variable is computed from
textual data, while the orange color represents variables obtained from other sources.
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ical study shows that TFM improves near-term economic forecasting accuracy
for the gross domestic product (GDP) of Korea compared to the model relying
on only official statistics.

The findings of this study can contribute to related research in two folds.
First, the proposed text-mining technique using subject-predicate patterns can
be applied to numerous topics to analyze textual information without expen-
sive labeled data. The approach can complement traditional surveying methods
with remarkably lower cost and less time by using ubiquitous news sources with
automated algorithms. Moreover, this study illustrates the potential of textual
information for economic forecasting, which is still in its infancy. This study
emphasizes the information from news sources is valuable by providing big data-
driven insight relevant to public perception of the economy.
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⟨Abstract in Korean⟩

보편적 뉴스 텍스트를 이용한 계량적 경제전망:
텍스트 강화 인자모형

서범석∗

뉴스 텍스트를 경제 예측에 활용하고자 하는 연구들이 주목받고 있다. 본 논
문은 학습 데이터 없이 경제 부문별 서술형 정보를 효과적으로 정량화하여 경제

예측에 활용하는 방법을 검토하였다. 본 논문은 경제 도메인별로 나타나는 주
어-술어 패턴을 이용하여 ’테마별 빈도 지수(Theme Frequency Index, TFI)’를
추정하고 이를 통해 경제에 대한 대중의 인식을 측정하였다. 구체적으로 생산,
인플레이션, 고용, 자본 투자, 주식, 주택 가격 등 15개 부문의 TFI를 제시하고
은닉인자 구조에 기반한 ’텍스트 강화 인자모형 (Text-enhanced Factor Model,
TFM)’을 구축하여 서술형 정보를 경제 예측에 반영하였다. 약 1천8백만 건의
뉴스기사를 바탕으로 한 실증분석 결과 TFM은 단기 GDP 예측 정확도를 향
상시키는 것으로 나타나며, 이는 도메인 지식을 반영한 텍스트 마이닝 기술이
학습 비용 없이도 정성적 정보를 효과적으로 처리할 수 있음을 보여준다. 본
논문에서 제시한 방법론은 신속하고 효율적이며, 서술형 정보를 이용하기 위한
다양한 경제 부문에서 활용이 가능할 것으로 기대된다.
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