
A brief introduction to C++ and Interfacing with Excel

ANDREW L. HAZEL

School of Mathematics, The University of Manchester
Oxford Road, Manchester, M13 9PL, UK

CONTENTS 1

Contents

1 Introduction 3

1.1 The programming work cycle . 4

1.2 The simplest C++ program . 4

1.3 The C++ keywords . 5

1.4 Syntax of the source code . 5

1.5 Practicalities: compiling and running C++ 6

1.5.1 Simple command-line compilation 7

1.5.2 Visual Studio Compilation . 8

2 Getting started with C++ 12

2.1 Data types . 12

2.2 Variables . 12

2.2.1 The scope of variables . 13

2.2.2 Arrays . 13

2.2.3 Dynamic memory allocation and pointers 14

2.3 Manipulating Data — Operators . 17

2.3.1 Arithmetic Operators . 17

2.3.2 Relational and logical operators . 18

2.3.3 Shorthand operators . 19

2.4 Talking to the world — Input and Output 19

2.4.1 A note on namespaces . 21

2.4.2 File I/O . 21

2.5 Conditional evaluation of code . 22

2.5.1 if . 23

2.5.2 The ? command . 24

2.5.3 switch . 25

2.6 Iterative execution of commands — Loops 26

2.6.1 for loops . 26

2.6.2 while and do-while loops . 28

2.7 Jump commands . 29

3 Functions 31

3.1 Where to define functions . 32

3.2 Function libraries . 34

CONTENTS 2

3.3 Modifying the data in function arguments 35

3.4 Function overloading . 36

4 Objects and Classes 38

4.1 Object-oriented programming . 38

4.2 The C++ class . 38

4.3 Constructors and Destructors . 43

4.4 Inheritance . 46

4.4.1 Overloading member functions . 48

4.4.2 Multiple inheritance . 51

4.5 Pointers to objects . 51

4.6 The this pointer . 52

5 Interfacing C++ and Excel 53

5.1 Writing a simple Excel Add-In in C++ 53

5.1.1 Creating the DLL in Visual Studio 53

5.1.2 Calling the library functions from within Excel 56

5.2 Using Excel from within C++ . 58

5.3 The Excel Object Model . 60

5.3.1 The Excel Application . 61

5.3.2 The Excel Workbook . 61

5.3.3 The Excel Worksheet and Ranges 61

1 INTRODUCTION 3

1 Introduction

Computers are an essential tool in the modern workplace. They are ideally suited to

the processing, analysis and simulation of data. In order to use a computer to solve a

particular problem, however, we must generate a list of instructions for the computer to

follow, a task known as programming. For common tasks, the lists of instructions will

almost certainly have been created by somebody else and we can use their work to solve

our problem. For example, Microsoft Excel contains the instructions to perform a huge

number of standard tasks. Nonetheless, Excel cannot do everything; and for unusual, or

new, tasks a new set of instructions must be written. The aim of this course is to provide

you with the necessary skills to generate your own lists of instructions so that you can

use computers to perform (almost) any task.

A programming language is a set of keywords and syntax rules that are used to “tell”

the computer what you want it to do. A list of instructions written in a programming

language is called a program and is most often created using text editors or the text

editor component of an integrated development environment. Ultimately, these instruc-

tions must be translated from the programming language into the native language of the

computer (assembly instructions). The translation is performed by specialised programs

known as compilers. In order to use a programming language you must have a compiler

for that language installed on your computer.

At the time of writing, there are hundreds, if not thousands, of different programming

languages, each with different strengths and weaknesses. The choice of programming

language is driven in part by the nature of the project. Excel Visual Basic for Applications

(VBA) is the native language of Excel and is ideal for writing small extensions, or macros,

within Excel Worksheets. In essence, Excel is the compiler for Excel VBA. VBA is not

suitable for every task, however. One restriction is that the language is not very portable;

every Excel VBA program must run from within Excel, which means that you need to

have Excel installed on your computer. In addition, for intensive numerical calculations,

VBA can be rather slow.1

C++ is perhaps best described as middle-level, computer-programming language. It

is highly portable (there are compilers for almost all computers), efficient and very popu-

lar. In these notes, we shall discuss how to use C++ on its own and in conjunction with

Excel, allowing the development of powerful and efficient solutions to complex problems.

1VBA is an interpreted language; its commands are translated into assembly language “line by line”

and the translation takes up time during the execution of the program.

1 INTRODUCTION 4

1.1 The programming work cycle

The compiler is responsible for checking that what you have written is legal; i.e. that

you have obeyed all the syntax rules and not violated any restrictions in the language.

When programming, a large amount of time is spent correcting your program in response

to compiler errors.

Once compiled, or built, the program must then be run, or executed, at which point

the computer will carry out the tasks specified in the program. Just because a program

compiles, however, does not mean that it will run. It is perfectly possible to write a

syntactically correct program that tries to perform an illegal action, for example dividing

by zero. These run-time errors, as opposed to compile-time errors, are another source,

or rather sink, of development time.

The basic work cycle when writing computer programs is illustrated below:

Write Compile Run

Compile-Time Debugging Run-Time Debugging

- -

������@
@I �

�	
XXXXXXXXXXXXXXXy

For complex projects, the work cycle can be simplified by using an integrated devel-

opment environment (IDE), such as Microsoft Visual Studio, or the Visual Basic Editor

within Excel. The development environment contains a text editor, for writing programs;

a compiler, for building the programs; and a whole range of debugging tools for tracking

down problems during the compilation and/or execution of the program. For the unini-

tiated, however, IDEs can seem overwhelming with a huge range of options that are not

required for simple projects.

1.2 The simplest C++ program

Every valid C++ program must “tell” the compiler where its set of instructions starts

and finishes. Hence, every C++ program must contain a function, see §3, that contains

every instruction to be performed by the program. The required function is called

main() and the simplest C++ program is shown below:

int main() {}

The program is very boring because the function contains no instructions, but it will

compile and it will run. The keyword int indicates that the function main() will return

1 INTRODUCTION 5

an integer (a whole number) when it has completed all its instructions. In C++, sets

of instructions are grouped together by braces, sometimes called curly brackets, {};

everything between the braces following main() will be executed while the program is

running. The round brackets are used to specify arguments to functions, see §3. It is

possible to write programs using only the main function, but to do so would fail to take

advantage of the more powerful structural features of C++.

1.3 The C++ keywords

There are 32 keywords defined by the ANSI C standard, see Table 1. If you are pro-

gramming in C, these are the only keywords that you have to remember and, in practice,

the working vocabulary is about 20 words. The C++ standard defines an additional 32

keywords, shown in Table 2. C++ is a rapidly evolving language and the number of

keywords may still change in the future. Case is important in C++ and keywords must

be specified in lower case: e.g. else is a keyword, but Else, ELSE and ELSe are not.

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Table 1: The 32 C keywords

1.4 Syntax of the source code

The key elements of C++ syntax are shown below:

• A semicolon is used to mark end of an instruction.

• Case is important, i.e. sin is not the same as SIN.

• Totally free form, lines and names can be as long as you like!

• Comments take the form /* C style comment */ or // C++ style comment.

1 INTRODUCTION 6

asm export overload throw

bool false private true

catch friend protected try

class inline public typeid

const cast mutable reinterpret cast typename

delete namespace static cast using

dynamic cast new template virtual

explicit operator this wchar t

Table 2: The 32 additional C++ keywords

• Groups of instructions are surrounded by braces {}.

The most important point to remember is that all statements must end with a semi-

colon ;. Often, forgetting a semicolon can cause a huge number of compilation errors,

particularly if the omission is near the start of a program.

1.5 Practicalities: compiling and running C++

Before it can be compiled, a C++ program must be saved as a file and, by conven-

tion, C++ programs are labelled by the filename extensions .cc, .cpp or .C. Large

projects may, and probably should, be split into separate files, which can be compiled

separately. The division of large projects into separate “compilation units” speeds up

the re-compilation of the whole project if only one small part of the project has been

changed. Keeping track of separate files and their interdependence is an area in which

IDEs are extremely useful. The alternative is to use command-line compilation and keep

track of all the different files yourself.

A command line is, as the name suggests, a place where you can issue (type) com-

mands. Rather than clicking an icon to start a program, you must type the name of the

program and then press return. Before windowing environments, all computation was

performed using the command line and it is still easier, and quicker, to use the command

line for compiling very simple programs.

We consider both “simple” command-line compilation and compilation within an IDE

(Visual Studio) for a simple program that merely prints the word Hello on the screen.

The C++ instruction that performs this task is

std::cout << "Hello" << std::endl;

1 INTRODUCTION 7

see §2.4.

1.5.1 Simple command-line compilation

The easiest way to write a small C++ program is to use a text editor, say Notepad,

to generate a .cpp file that contains the required instructions and then to compile the

program in a Command Prompt Window. The command for the Visual Studio C++

compiler is cl /EHsc file.cpp, where file.cpp is the file that contains your C++

program. The process is illustrated in Figure 1. The result of the compilation process is

Figure 1: An illustration of simple command-line compilation. A Notepad window

containing a simple C++ program, hello.cpp, that will print the word Hello on the

screen; and a Visual Studio Command Prompt showing the compilation of the program

hello.cpp and its execution.

1 INTRODUCTION 8

an executable file hello.exe. In order to run the program one can either double click

on the hello.exe program from the File Manager, or type hello.exe (and then return)

into the command prompt, see Figure 1.

This method of compilation will work for all simple projects, that is all projects in

this course. The method can be made to work for more complex projects, but it becomes

more and more difficult to do so.

1.5.2 Visual Studio Compilation

A better way of managing large projects is to use Visual Studio. Initially, this will

seem more complicated than the simple method outlined above, but it does not become

significantly more complex as the projects become larger. Once Visual Studio has been

started, it is used to write, compile and run the program. One major advantage of Visual

Studio is that it automatically includes a number of libraries that are used to help

your program interact with the Windows operating system. A library is a collection of

functions that have already been written and compiled. Precisely which libraries should

be included depends on the type of program that you are writing. If the program will use

graphics or interact with the mouse it requires more libraries than a simple command

line application. You can specify which libraries are included by choosing your project

type when creating a new project. During this course, we shall consider only (Win 32)

Console Applications and Win32 Projects.

The first time that you run Visual Studio you may be asked to select a default

environment, in which case you should select “Visual C++ Development Settings”. In

Visual Studio 2003 (and earlier), the Start Page of Visual Studio contains a New Project

button, which when pressed brings up the New Project dialog box, see Figure 2. In

Visual Studio 2005, the same dialog box is accessed by clicking the Project: Create link

in the Recent Projects window on the Start Page.

For simple C++ programs, the project should be a Visual C++ Console Application,

also called a Win32 Console Application, located in the Win32 submenu of the Visual

C++ project templates. Filling in a name, e. g. Hello, for the project in the dialog

box and double-clicking on the Console Application icon from the Templates window (or

clicking Open in the dialog box after selecting the Console Application icon) will bring up

the Application Wizard. For the default settings, simply press Finish and Visual Studio

will then create a number of files, which should appear in the Solution Explorer window

on the side of the screen. For information you can double-click on the ReadMe.txt file.

Double-clicking on Hello.cpp (the actual C++ program) brings up a short section of

1 INTRODUCTION 9

Figure 2: Visual Studio Start Page and New Project dialog. A Console Application

called Hello is about to be created.

C++ code, see Figure 3. In order to write our own program, we comment out the pre-

created instruction in the function int tmain() and add our instruction. The program

may then be compiled by going to the Build menu and choosing the Compile option.

Alternatively, we can choose to run our program by selecting Start from the Debug

menu. If the program has been modified without compiling it a dialog box pops up, see

Figure 4, pressing yes causes the program to be compiled and then run. Thus, the entire

write, compile and run process takes place within Visual Studio.

A complete description of the features of Visual Studio is well beyond the scope of

this introductory course. A vast amount of information is provided in the on-line help

documentation.

1 INTRODUCTION 10

Figure 3: A Visual C++ Console Application, Hello, and the main source code

Hello.cpp. The Run command is about to be issued.

1 INTRODUCTION 11

Figure 4: Visual Studio dialog box that appears when trying to run a program without

re-compilation, clicking on Yes will cause the program to be compiled and then executed.

2 GETTING STARTED WITH C++ 12

2 Getting started with C++

2.1 Data types

Almost all computational tasks require the manipulation of data, e.g. finding the maxi-

mum of a set of numbers, printing an e-mail, modelling the growth of the stock market,

etc. In C++, the particular type of each datum must be declared before it can be used.

It is possible to create your own “custom” data types, but for simple tasks the seven

built-in data types (char, wchar t, bool, int, float, double and void) are sufficient.

Table 3 shows the type of data represented by the first six keywords.

char a single character (letter)

wchar t a wide character (letter)

(used for characters from non-english alphabets)

bool a boolean datum (true or false)

int an integer datum (whole number)

float a floating-point datum

(a real number with six digits of precision)

double a double-precision, floating-point datum

(a real number with ten digits of precision)

Table 3: The (non-void) C++ built-in data types.

The void data type is rather special and is used to declare a function that does not

return a value (a subroutine), see §3.

2.2 Variables

A variable is a named location in memory, used to store something that may be modified

by the program. All variables must be declared before they are used. You can call

variables anything you like, provided that the name you choose does not start with a

number, is not a C++ keyword and is not the same as any other variable within the

same scope, see §2.2.1. It is usually a good idea to use descriptive names that indicate

what the variable represents. Example declarations are shown below:

int i,j,k;

double a,b;

char initial;

2 GETTING STARTED WITH C++ 13

Note that commas may be used to separate variables of the same type and that each line

ends with a semicolon. The initial value of a variable may be assigned when the variable

is declared. Uninitialised variables can be a source of mysterious errors, so it’s a good

idea to initialise your variables if practical:

int i=0,j=1,k=2;

double a=12.35648;

char ch=’a’;

Note that characters must be enclosed in single quotes ’.

2.2.1 The scope of variables

C++ permits the declaration of variables anywhere within your program, but a variable

can only be used between the braces {} within which it is declared. The region in which

the variable can be used is known as its scope. An advantage of local scopes is that you

can use the same name for variables within different regions of the same function. The

following two example codes illustrate these ideas.

int main() int main()

{ {

//Declare a in new scope //Declare a in current scope

{int a = 10;} int a=10;

//Declare a in new scope (ok) //Re-declare a in scope (illegal)

{int a = 15;} int a = 15;

//a used outside scope (illegal) //a used in scope (ok)

a = 20; a = 20;

} }

Neither of the two codes will compile. The code on the left fails on the last line

of main with the error ’a’ : undeclared identifier because a has not been de-

clared in scope. The code on the right fails on the fourth line of main with the error

’a’ : redefinition; multiple initialization because the variable a cannot be de-

clared twice in the same scope.

2.2.2 Arrays

An array is a just like an array in maths: a collection of variables of the same type, called

by the same name, but each with a different index. The standard way to define an array

is to enclose the dimension in square brackets [] after the variable name.

2 GETTING STARTED WITH C++ 14

int x[100]; // 100 integer array

double y[300]; // Array of 300 doubles

Arrays are initialised by using braces to define the array and commas to separate the

individual array entries:

double x[3] = {1.0, 2.5, 3.7};

The individual entries of an array are accessed by adding a single number in square

brackets after the variable name. The array double x[3] has the entries x[0] (= 1.0),

x[1] (= 2.5) and x[2] (= 3.7). Important note: In C++, array indices start from 0.

Multidimensional arrays are declared and initialised in an obvious way:

double matrix[10][10];

int 3dtensor[3][3][3] = {{1,2,3},{4,5,6},{7,8,9}};

The maximum number of dimensions, if any, is determined by the compiler. Note that

arrays defined in this way are allocated in the stack, an area of memory designed to store

variables with short lifetimes. The size of the stack is set by the operating system. An

area of memory that is designed to store longer-lived variables is known as the heap, but

can only be accessed via dynamic allocation.

2.2.3 Dynamic memory allocation and pointers

In many cases, the size of the array will not be known when writing the program. For

example, if we are reading in data from a file then the total number of data will depend

on the size of the file. In these situations there are two options:

• Static Allocation: Allocate a fixed, but large, amount of storage, double A[1000];

(possibly limited by stack size).

• Dynamic Allocation: Determine the exact amount of storage required as part of

the program.

In C++ dynamic memory allocation is handled by pointers, which are declared using

the * operator.

double *A_dynamic;

2 GETTING STARTED WITH C++ 15

We have declared the variable A_dynamic as a pointer to a double, or an address in

memory. Declaring a pointer does not actually allocate any storage for a double variable,

it merely “points” to an area of memory that can be used to store double variables.2

The use of pointers for dynamic memory allocation may seem rather convoluted, but

pointers have many other uses. In particular, they are an essential part of the interface

between C++ and Excel — the only way that we can know where Excel has stored a

particular variable is by its memory address, i.e. a pointer, see §5.

Having declared a pointer, we can use it to allocate storage for as many double data

as required. The instruction

A_dynamic = new double[100];

allocates an array of 100 double variables and the pointer refers to the first of these

variables. We use the standard array syntax to access the variables, A_dynamic[0] is

the first entry in the array, etc. Of course, if we knew that we needed storage for 100

data we could have defined the array statically.

The following program assigns storage for a number of int variables read in from a

file, for details on file I/O see §2.4.2.

#include<iostream>

#include<fstream>

using namespace std;

int main()

{

//Declare and null a pointer to integer data

int *A_dynamic=0;

cout << "Reading in data from file" << endl;

ifstream in_file("input.dat");

//The number of data must be the first entry in the file

int num_data=0;

in_file >> num_data;

2The introduction of a pointer does introduce an additional memory overhead because we have to

store the pointer itself. A bad choice of data structure with multiple pointers can be very wasteful.

2 GETTING STARTED WITH C++ 16

//Allocate storage

A_dynamic = new int[num_data];

//Loop over the number of data and read from file

for(unsigned i=0;i<num_data;i++)

{

in_file >> A_dynamic[i];

}

//Close the file

in_file.close();

//Calculate the sum of all the data

double sum=0.0;

for(unsigned i=0;i<num_data;i++) {sum += A_dynamic[i];}

//Print out the average value

cout << "Average value " << sum/num_data << endl;

//Free the memory allocated

delete[] A_dynamic; A_dynamic=0;

}

If the file input.dat contains the single line

10 1 2 3 4 5 6 7 8 9 10

the output from the program is

Average value 5.5

Once we have allocated memory for variables using the new keyword, then we are in

charge of cleaning up when we have finished with it. The keyword delete is used to

deallocate memory. If an array has been allocated, square brackets must be added after

the delete command, e.g. delete[] array_data.

If memory has been deleted then it can be reused by any other programs running on

the computer. If it is accidentally used by your program again, without reallocation, the

result is a nasty run-time error known as a segmentation fault. These are particularly

2 GETTING STARTED WITH C++ 17

hard to track down because if the memory has not yet been grabbed by another program

then everything will appear to be fine. For this reason, it is very good practice to “null

out” unused pointers. When a pointer is declared, initialise it to null, 0, and when the

allocated memory has been deleted reset the value of the pointer to zero.

2.3 Manipulating Data — Operators

We can now create and initialise variables, but how do we modify the data? The answer

is to use operators, which, as the name suggests, operate on the data. The built-in

operators in C++ may be broadly subdivided into four classes arithmetic, relational,

logical and bitwise.

You have already been introduced to the assignment operator, =. The most general

form of assignment is

variable = expression;

Note that C++ will convert between data types in assignments. The code shown below

will compile without complaint.

int i=1;

char ch;

double d;

ch = i; // Conversion from int to char

d = ch; // Conversion from char to double

The compiler will usually do the right thing, for example converting from double

to integer should give the integer part of the result. That said, it is unsafe to rely on

automatic conversion, and doing so can give rise to funny errors. Be sure to check data

types in expressions carefully.

2.3.1 Arithmetic Operators

Table 4 lists the C arithmetic operators, which are pretty obvious apart from the last

three, %, -- and ++. The modulus operator, %, gives the remainder of integer division,

it cannot be used on floating point data types. The increment and decrement operators

may seem strange at first: ++ adds 1 to its operand and -- subtracts 1. In other words,

x = x + 1; is the same as ++x; and x = x - 1; is the same as x--;. Increment and

2 GETTING STARTED WITH C++ 18

- Subtraction

+ Addition

* Multiplication

/ Division

% Modulus

-- Decrement

++ Increment

Table 4: The C++ arithmetic operators

decrement operators can precede or follow the operand and there is only a difference

between the two when used in expressions.

x = 10;

y = ++x; // Increments x and then assigns y; i.e. x = y = 11

x = 10;

y = x++; // Assigns y and then increments x; i.e. x = 11, y = 10

Arithmetic operators are applied in the following order:

First ++ --

- (unary minus)

* / %

Last + -

Parentheses () may be used to alter the order of evaluation by forcing earlier evaluation

of enclosed elements. i. e. 2 + 3*5 = 17, but (2+3)*5 = 25.

2.3.2 Relational and logical operators

Relational and logical operators rely on concepts of false and true, which are represented

by integers in C++. False is zero and true is any value other than zero. Every expression

involving relational and logical operators returns 0 for false and 1 for true. Table 5 shows

all the relational and logical operators used in C++.

Examples of relational operations and their values are

10 > 5 // True (1)

2 GETTING STARTED WITH C++ 19

Relational operators

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

== Equal

!= Not equal

Logical operators

&& AND

|| OR

! NOT

Table 5: The C++ relational and logical operators

19 < 5 // False (0)

(10 > 5) && (10 < 20) // True (1)

10 < 5 && !(10 < 9) || 3 <= 4 // True (1)

These operators are usually used to control the flow of a program and will be further

explored in section 2.5.

2.3.3 Shorthand operators

C++ uses a convenient (well some would, and do, say obscure) shorthand to replace

statements of the form x = x + 1,

x += 10; /* is the same as */ x = x + 10;

x -= b; /* is the same as */ x = x - b;

This shorthand works for all operators that require two operands and is often used in

professional C++ programs, so it is well worth taking the time to become familiar with

it. In fact, shorthand operators are slightly more efficient because they avoid the need

to create temporary variables.

2.4 Talking to the world — Input and Output

No matter how wonderful your program is in isolation, at some point it’ll need to interact

with the outside world. I/O or input and output is not part of the standard C++

2 GETTING STARTED WITH C++ 20

keywords. The appropriate functions are present in libraries that can be incorporated into

any C++ program. The necessary library is called iostream and is included using the

compiler directive #include<iostream>. In fact, Visual Studio automatically includes

the appropriate libraries for you when it creates the Console Application template.

An example of simple I/O is shown below

#include <iostream>

int main()

{

int i; //Declare an integer variable

std::cout << "This is output.\n"; //print a string

std::cout << "Enter a number: ";

std::cin >> i; //read in a number

// output the number and its square

std::cout << i << " squared is " << i*i << "\n";

}

std::cout is a stream that corresponds to the screen and std::cin is a stream that

corresponds to the keyboard. The << and >> operators are output and input operators

and are used to send output to the screen and take input from the keyboard. Several

output operators can be strung together in the same command. The special character

’\n’ represents a newline. This program reads into a variable, i, that has been declared

to be an integer and what you type at the keyboard is automatically converted into an

integer. If the input data is not of the correct type very strange things can happen, see

below.

%./a.out

This is output

Enter a number 5

5 squared is 25

% ./a.out

2 GETTING STARTED WITH C++ 21

This is output

Enter a number 1.45

1 squared is 1

% ./a.out

This is output

Enter a number a

1 squared is 1

2.4.1 A note on namespaces

You may be wondering about the meaning of the prefix std::. The answer is that std

is a C++ namespace. When writing large projects it is almost impossible to think of

unique names and it’s easy to accidentally call two distinct things by the same name. In

an attempt to prevent this, C++ allows the grouping of functions and data into named

collections — namespaces. All functions and classes defined in the standard libraries

are in the standard namespace, std. In order to tell the compiler that we want to use

cout from the namespace std the syntax is std::cout. An alternative is to place the

statement using namespace std; at the top of our program, see later examples, in

which case the standard namespace will be searched for any unknown names and we do

not need to use the std:: prefix at all.

2.4.2 File I/O

File I/O is very similar to the I/O system described above and is also based upon streams.

An extra header file must be included for file I/O, #include <fstream>. An input stream

uses the ifstream class and an output stream uses the ofstream class. The following

program writes a simple text file that lists the integers 1 to 10 in one column and their

squares in the next column.

#include <iostream>

#include <fstream>

int main()

{

using namespace std;

ofstream out("test.out"); // Open an output file called test.out

2 GETTING STARTED WITH C++ 22

// The output stream is called out

//Error check:

//If the file has not been opened then out will be zero

if(out==0)

{

cout << "Cannot open file test.out\n";

throw; // Throw an exception (end program)

}

//A loop in which i takes the integer values 1 to 10

for(int i=1;i<=10;i++)

{

//Print the value of i and i squared to the output file

out << i << " "<< i*i << endl;

}

//Close the output file

out.close();

}

We test whether the file has actually be opened by using an if statement, see §2.5. If

the file has not been opened, the error is reported by using the keyword throw, which

immediately exits the main function and returns control to the operating system. The

object endl is an output stream modifier that outputs a newline and flushes the stream,

i.e. writes everything to disk.

In fact, opening a file does not have to be done when the stream is declared. The

command out.open("test.out"); can be used anywhere in the body of the function.

2.5 Conditional evaluation of code

In many tasks, the next instruction will depend on the results of a previous calculation

and this means that the actual instructions that are performed can vary when the pro-

gram is executed at different times. In the previous example, the program will print an

error and stop if the file cannot be opened, which could occur because the disk is full.

2 GETTING STARTED WITH C++ 23

2.5.1 if

C++ supports two main conditional constructs: if and switch. The general form of the

if command is

if(expression) statement;

else statement;

where a statement may be a single command, a block of commands, enclosed in braces

{} or nothing at all; the else command is optional. If expression evaluates to true,

anything other than 0, the statement following if is executed; otherwise the statement

following else is executed, if it exists. Let’s consider a concrete example:

#include <iostream>

using namespace std;

int main()

{

float a;

cout << "Please enter a number ";

cin >> a;

if(a > 0) cout << a << " is positive\n";

else cout << a << " is not positive\n";

}

The above program takes a user-entered number and determines whether or not it is

positive. If-else commands may be nested and this language feature can be used to add

a zero test to the above program:

#include <iostream>

using namespace std;

int main()

{

float a;

cout << "Please enter a number ";

2 GETTING STARTED WITH C++ 24

cin >> a;

if(a > 0) cout << a << " is positive\n";

else

if(a == 0) cout << a << " is zero\n";

else cout << a << " is not positive\n";

}

Important note The test for equality is the == relational operator. One of the most

common programming mistakes is to use the assignment operator = instead of the rela-

tional operator ==.

if(a=0) cout << a << " is zero\n";

The above code will compile, but it doesn’t do what you think! The expression a=0

assigns the value 0 to the variable a and returns true if successful. Thus, instead of

testing for zero, the statement automatically sets a to zero.

2.5.2 The ? command

The ? operator is a shorthand for simple if-else statements. The syntax is

expression 1 ? expression 2 : expression 3

and if expression 1 is true, then expression 2 is evaluated; if expression 1 is false expres-

sion 3 is evaluated.

x = 10;

y = x > 9 ? 100 : 200;

In the above example, y is assigned the value 100; if x had been less than 9, y would

have the value 200. In if-else terms the same code would be

x = 10;

if(x > 9) y = 100;

else y = 200;

For clarity, it is generally better to avoid the ? operator and write out the full if-else

construction. Nevertheless, you might encounter it in programs written by others.

2 GETTING STARTED WITH C++ 25

2.5.3 switch

The switch command is used to construct multiple-branch selections and tests the value

of an expression against a list of integer or character constants. Unlike if, switch can

only test for equality, but it can be useful in certain situations, such a menu operations.

#include <iostream>

using namespace std;

main()

{

char ch;

double x=5.0, y=10.0;

cout << " 1. Print value of x\n";

cout << " 2. Print value of y\n";

cout << " 3. Print value of xy\n";

cin >> ch;

switch(ch)

{

case ’1’:

cout << x << "\n";

break;

case ’2’:

cout << y << "\n";

break;

case ’3’:

cout << x*y << "\n";

break;

default:

cout << "Unrecognised option\n";

break;

} \\End of switch statement

} \\End of main function

2 GETTING STARTED WITH C++ 26

The case keyword is used to demark individual tests and the break keyword breaks

out of the switch command at the end of each test segment. The optional default

block corresponds to the final else, it executes if none of the tests are true. If the break

command is omitted then the next command(s) in the switch statement will execute.

This can be used to produce the same behaviour for many tests. i.e.

switch(ch)

{

case ’1’:

case ’2’:

case ’3’:

cout << "1, 2 or 3 pressed\n";

break;

}

2.6 Iterative execution of commands — Loops

Almost all programming tasks require the repeated execution of the same, or very similar,

commands. Instead of writing the same, or almost, the same instruction several times,

it would be much better to write the instruction once and tell the computer to perform

it several times, such a construct is known as a loop.

2.6.1 for loops

The most versatile loop construct in C++ is the for loop, which repeats a block of code

a number of times until a predefined condition is satisfied. The generic form of this

construct is

for(initialisation; condition; increment) statement;

where the initialisation command is executed at the start of the first loop. The condition

is tested at the top of each loop and if it is true then the loop commands are executed.

The increment command is executed at the end of each loop.

#include <iostream>

using namespace std;

int main()

{

2 GETTING STARTED WITH C++ 27

for(int i=1; i <= 10; i++) cout << i << i*i << "\n";

}

The above example prints the numbers 1 to 10 and their squares. In this case the

increment operator ++ has been used as the increment command. The comma operator

allows multiple variables to control for loops:

#include <iostream>

using namespace std;

int main()

{

int i,j;

for(i=1, j=20; i < j; i++, j-=5)

{

cout << i << " " << j << "\n";

}

}

produces the output

1 20

2 15

3 10

4 5

The components of a for loop may be any valid C++ commands, or they may be

absent, allowing powerful generalisations. For example

for(x=0; x!=100;) cin >> x;

will run until the user enters 100.

for(;;) cout << "An infinite loop\n";

A for loop with no components is an infinite loop, it can only be terminated by using

a break command somewhere in the loop. Time delay loops may be constructed by

omitting the body of a for loop e. g.

for(t=0; t < 100; t++); // wait for a while

2 GETTING STARTED WITH C++ 28

2.6.2 while and do-while loops

Another type of loop is the while loop, which has the functional form

while(condition) statement;

and continues to iterate until the condition becomes true. The while loop tests the

condition at the top of the loop and so the statement will not execute if the condition is

initially false. A common use of while loops is for convergence tests

#include <iostream>

using namespace std;

main()

{

double num=50;

while(num > 0.0001)

{

num /= 2.0;

}

cout << num << "\n";

}

This loop repeatedly halves the variable num until it is less than a specified tolerance.

A do-while loop is similar to a while loop, but performs the test at the bottom of

the loop rather than the top. It has the form

do{statement;} while(condition);

The do loop above could equally well have been a do-while loop:

#include <iostream>

using namespace std;

main()

{

double num=50;

2 GETTING STARTED WITH C++ 29

do

{

num /= 2.0;

}

while(num > 0.0001);

cout << num << "\n";

}

Remember, a do-while loop always forces at least one execution of the commands in the

body of the loop, whereas a while loop does not.

2.7 Jump commands

In certain situations, you might want to jump to a new point in the program skipping

over the intermediate instructions. The most common jump command is return which

is used to return from functions to the main program, see §3. The break command has

already been mentioned when describing the switch construct. It has a more general

scope, however, and can be used to force the immediate termination of any loop. For

example

for(int i=0; i <= 10; i++)

{

cout << i;

if(i==5) break;

}

will only display the numbers 1 to 5 on the screen because break overrides the conditional

test i <= 10 in the for loop.

The “opposite” of the break command is continue, which forces another iteration

of the loop, skipping any intermediate code. In a for loop, the increment command is

performed and then the conditional test. In while and do-while loops control passes

directly to the conditional tests. This can be used to force the earlier evaluation of the

condition.

#include <iostream>

using namespace std;

2 GETTING STARTED WITH C++ 30

int main()

{

bool flag=false;

char ch;

while(!flag)

{

cin >> ch; //read in a character

if(ch==’x’)

{

flag = true;

continue;

}

cout << "You have entered the character " << ch << "\n";

}

}

The preceding program takes input from the keyboard and prints the individual charac-

ters entered. If the user enters an x the loop terminates without printing that character.

This program also illustrates another common C++ programming practice, using boolean

variables as test variables. If flag is false (0), then not flag (!flag) is 1 which is true and

the while loop executes. If flag is set to true (1), not flag will be zero, which is false and

the loop terminates. If you understand this program, then you should have no problem

with relational expressions in C++.

3 FUNCTIONS 31

3 Functions

Functions are the building blocks of C++ programs and, in their simplest form, are

merely groups of instructions. In general, however, a function can take a number of

variables (arguments), operate upon them and return a value to the part of the program

from which the function was called. You should already be familiar with the most

important function main(). The most general form of a function definition is shown

below

return data type function_name(arguments)

{ body of function }

The arguments to a function take the form of a comma-separated list of type definitions

i.e. (double a, int b, ...). If the function does not return a value (a subroutine),

the return data should be of the type void.

Consider now a function square() that returns the square of its argument:

int square(int a)

{

return(a*a);

}

The function “expects” an integer variable as its argument and returns a integer variable.

The return keyword causes the function to return to the point in the program from which

it was called and sets the return value, if there is one.

In a well-written program tasks that are performed many times should be “packaged

away” in functions and it is the functions that are then called repeatedly. The advantage

of this approach is that once the function has been written and tested it can be trusted not

to be the source of any errors in the program, which facilitates debugging. In addition,

if a more efficient method of achieving the same result is found, the function can be

changed in one place and the rest of the program will not have to be altered.

The following example shows how to use functions in a C++ program.

#include <iostream>

using namespace std;

//Declare a function that multiplies two integers

int product(int a, int b)

3 FUNCTIONS 32

{

return(a*b);

}

//main body of program

int main()

{

int i,j; //Declare two integers

//Loop i varies from 1 to 10, and j varies from 10 to 1

for(i=1, j=10; i<=10; i++, j--)

{

cout << i << " " << j << " " << product(i,j) << "\n";

}

}

Note that the choice of variable names used within the product() function is totally

independent of any other variables in the program. It is a common misconception that

if the arguments of the function are a and b then the function must be called using the

variable names a and b.

3.1 Where to define functions

In C++, nested functions are not allowed, which means that functions cannot be defined

within other functions. In particular, all functions must be defined outside the main()

function. For example, the following is illegal code.

int main()

{

//Nested function --- illegal

double square(double x) {return x*x;}

square(2.0);

}

A legal version of the above code would be

//Function definition outside main -- legal

3 FUNCTIONS 33

double square(double x) {return x*x;}

int main()

{

square(2.0);

}

In addition, functions must be defined before they can be used. The following is again

illegal code:

int main()

{

//Function called before definition

square(2.0);

}

double square(double x) {return x*x;}

Actually, we do not have to define the entire function before it is called, we can specify

the function prototype — its name, arguments and return type — and delay specification

of the function body. The function prototype is defined in the same way as a function

but with a semi-colon placed after the closing parenthesis, see below.

//Function prototype (establish the interface)

double square(double x); //Note the semi-colon here

int main()

{

//Call function (interface defined so OK)

square(2.0);

}

//Now define body of square function, as usual

double square(double x) {return x*x;}

3 FUNCTIONS 34

3.2 Function libraries

The core C++ language is very compact, but much of the power of the language rests

in the vast number of existing libraries, which contain many thousands of specialised

functions. We have already used the I/O libraries, but there are many, many others.

Another commonly used library is the math library, cmath. The standard trigonometric,

hyperbolic and exponential functions are all present: e. g. sin(), exp(), acos(), log(),

tanh(). Also of use are the function pow(x,y) which raises the number x to the power

y and sqrt(), the square-root function.

#include <iostream>

#include <cmath>

using namespace std;

//Define our own cube root function

double cbrt(double arg)

{

double result;

result = pow(arg,(1.0/3.0));

return(result);

}

int main()

{

int i;

double x;

// Loop over the numbers 1 to 10

for(i=1;i<=10;i++)

{

x = i*i*i; // This will transform the integer result to a double

cout << x << " has the cube root " << cbrt(x) << "\n";

}

}

This example also illustrates the use of local variables in functions. The variable

result is only defined within the function cbrt(), it cannot be accessed from main()

3 FUNCTIONS 35

and is a form of data encapsulation.

3.3 Modifying the data in function arguments

The functions defined thus far cannot change the value of the arguments passed to them.

Consider the following example

#include<iostream>

using namespace std;

void square(int x) { x = x*x; }

int main()

{

int a=5;

square(a);

cout << a << endl;

}

The result of running this program is that the number 5 will be printed on the screen.

The variable a, defined in main, has not been changed by the function square. This is

because the local variable x is a copy of the value stored in the variable a. The value of

the copy is changed within square, but the original remains unchanged. The behaviour

of the function is known as call by copy and is the “default” for C++ functions.

If we want the function to be able to modify the value of its arguments we must

change this behaviour as shown below

#include<iostream>

using namespace std;

void new_square(int &x) { x = x*x; }

int main()

{

int a=5;

new_square(a);

cout << a << endl;

3 FUNCTIONS 36

}

Now, the number 25 will be printed on the screen. The only difference between the

two functions square and new_square is the introduction of an ampersand, &, in the

definition of the arguments to new_square. This is an instruction to the C++ to change

the default behaviour and to use call by reference rather than call by copy. Now,

the original variable, rather than a copy of its value, is directly accessed by the function.

3.4 Function overloading

The function square was written assuming that the data was int, but what happens

when we call it with double data.

#include<iostream>

using namespace std;

int square(int x) {return x*x;}

int main()

{

double a=1.5;

cout << square(a) << endl;

}

The answer is that the double passed to the function will be converted into an integer

and the program displays the number 1. Most compilers will issue a warning when

compiling the above code.

We must write a new function that calculates the square of a double datum.

double square(double arg) {return (arg * arg);}

In older languages, such as C and FORTRAN, it’s impossible to have two functions with

the same name. In C++, you can write many functions with the same name, a property

known as function overloading. To avoid confusion, functions with the same name should

serve the same purpose, usually acting on different types of variables or classes. The only

limitation is that C++ uses the arguments to the function to decide which version of the

3 FUNCTIONS 37

function to call. Thus, it is impossible to have two functions with the same name and

arguments, but different return types.

int solve_pde(double a);

float solve_pde(double a); // Illegal

int solve_pde(double a, int b) // OK

The compiler will determine which version of the function to use when it is called. The

following code is illegal in C, but will compile and run in C++.

#include <iostream>

using namespace std;

int square(int arg)

{

cout << "Integer square() called " << endl;

return (arg * arg);

}

double square(double arg)

{

cout << "Double square() called " << endl;

return (arg * arg);

}

main()

{

int i=10;

double a=20;

cout << i << " squared is " << square(i) << "\n";

cout << a << " squared is " << square(a) << "\n";

}

4 OBJECTS AND CLASSES 38

4 Objects and Classes

4.1 Object-oriented programming

The programming that we have done so far has been procedural — everything is done by

functions that are ultimately called from within the main function. This use of functions

hides details of the information and instructions needed to perform specific tasks from the

rest of the program. Such compartmentalisation of code and data allows easy upgrades to

the program and also makes it easier for many programmers to work on a large project.

Object-oriented programming develops these ideas further and imposes a higher level

of structure than procedural languages. In general, a problem is broken down into sub-

problems organised in a hierarchical structure. Each subproblem can be translated into

self-contained units called objects, which can contain variables and functions (also called

methods) that operate upon those variables.

In their simplest form, objects can be regarded as “custom” data types. For example,

a complex number is an object that has a real and an imaginary part. If we want to

operate on the new complex number object then we must write new functions to do so.

Object-oriented programming introduces three main ideas:

Encapsulation binds code and data together into an object that cannot be influenced

from outside sources except in very tightly controlled ways.

Polymorphism represents the concept of “one interface, multiple methods”. The same

interface can be used to do different things for different objects: i.e. define + to add real

numbers, and “custom made” complex numbers, matrices, etc.

Inheritance allows one object to acquire the properties of another. The new object has

all the properties of the old and may add more of its own. An example would be to define

a generic Option object and the derived objects EuropeanOption, AmericanOption,

AsianOption, etc, could all inherit from Option.

4.2 The C++ class

The C++ class keyword is used to define objects. A very simple example would be to

create a bank account class that stores the name and balance of a customer.

#include <string>

using namespace std;

class Account

{

4 OBJECTS AND CLASSES 39

public:

string Name;

double Balance;

};

The syntax is straightforward, the class keyword followed by a name indicates that we

are defining a new class. Inside the braces we define all the variables (member data)

that make up our new class. A string is a C++ object that represents a collection of

letters, i.e. words. The public keyword indicates that these data can be accessed (and

potentially modified) from outside the class. Finally, we must finish the declaration by

placing a semicolon after the closing brace };.

Once defined, the Account class can be used in the same way as any built-in data

type. We define objects of the Acccount class as follows:

int main() "

{

Account ac_001, ac_002;

ac_001.Name = "John Smith"; ac_001.Balance = 0.0;

ac_002.Name = "Jane Jones"; ac_002.Balance = 10.0;

}

The two objects (variables) ac_001, ac_002 are both instantiations of the Account

class. Note that the variables within the class are accessed by using the dot operator,

but that we must use the name of the specific object, not the class name, Account.Name

is an error. If the public keyword had not been included in our class definition, the

above code would not compile; it fails with the error ’Account::Name’ cannot access

private member declared in class ’Account’.

The most general class definition is:

class class_name {

private data and functions

access-specifier:

data and functions

access-specifier:

data and functions

4 OBJECTS AND CLASSES 40

.

.

.

access-specifier:

data and functions

} object list ;

The object list is optional, but if present it defines objects of the class. Once the class

is declared, objects may also be defined anywhere in the code. The access-specifier is

one of the three keywords public, private or protected. The default access type of

classes is private, which means that the data and functions can only be used by objects

of the same class. If the items are public, they are accessible by other parts of the

program, as shown above. Finally, the protected keyword is essentially the same as

private, but protected members may be used by any derived classes, §4.4. Note that

access specification can be changed many times in a class declaration.

Member functions are functions that are defined within the class and can operate on

all the class’s member data. An example would be a print_balance function in our

Account class.

#include <iostream>

#include <string>

using namespace std;

class Account

{

public:

string Name;

double Balance;

//Print the balance to the screen (cout)

void print_balance()

{

cout << Name << "’s account has a balance of "

<< Balance << endl;

}

};

4 OBJECTS AND CLASSES 41

int main()

{

//Declare and initialise the account

Account ac_001;

ac_001.Name = "John Smith"; ac_001.Balance = 100.0;

ac_001.print_balance();

}

Note that the member function is accessed in the same way as member data by using

the dot operator.

Another obvious member function for an account class is a deposit() function.

#include <iostream>

#include <string>

using namespace std;

class Account

{

public:

string Name;

double Balance;

//Print the balance to the screen (cout)

void print_balance()

{

cout << Name << "’s account has a balance of "

<< Balance << endl;

}

//Deposit amount into the account

//Function prototype, ‘‘guts’’ must be defined later

void deposit(const double &);

};

//Definition of the deposit function

4 OBJECTS AND CLASSES 42

void Account::deposit(const double &amount)

{

Balance += amount;

}

int main()

{

//Declare and initialise the account

Account ac_001;

ac_001.Name = "John Smith"; ac_001.Balance = 100.0;

ac_001.deposit(50.0);

ac_001.print_balance();

}

We can define the “guts” of member functions outside the class provided that we provide

a function prototype within the class. A function prototype must specify the name of

function, its return type and its arguments, but instead of the definition within braces,

we finish the statement with a semicolon. The function body can be defined anywhere

else in the program, but must be defined somewhere or the program will not compile.

If defined outside a class declaration, a member function must include the class names-

pace, ClassName::member_function(), to distinguish it from member functions of other

classes with the same name. If the arguments of the function are not the same as those

of the prototype the program will not compile. The const keyword in the function ar-

gument indicates that the function is not allowed to change the argument amount even

though it has been passed by reference.

Having written our deposit function, we can make Balance a private variable so

that it can only be modified by member functions of the Account class. The following

program should produce the same output as the program above, but it does not. Why?

#include <iostream>

#include <string>

using namespace std;

class Account

{

4 OBJECTS AND CLASSES 43

private:

double Balance;

public:

string Name;

//Print the balance to the screen (cout)

void print_balance()

{

cout << Name << "’s account has a balance of " << Balance << endl;

}

//Add amount to the balance (now declared in the class)

void deposit(const double &amount)

{

Balance += amount;

}

};

int main()

{

//Declare and initialise the account

Account ac_001;

ac_001.Name = "John Smith"; ac_001.deposit(100.0);

ac_001.print_balance();

}

The answer is that because we have made Balance private, we cannot access it directly

in the main program and it has not been initialised, which means that the result could be

anything! The initialisation of private data can only be performed by a special member

function — the constructor.

4.3 Constructors and Destructors

Constructor functions are called whenever an object is created and are used to initialise

variables within the object. Similarly, destructor functions are called when an object

4 OBJECTS AND CLASSES 44

is destroyed and are used to clean up memory or close files that may have been opened

by the object.

For any object, the constructor has the same name as the class and the destructor

has the same name as the class, prepended by a tilde ~. We now add a constructor and

a destructor to our Account class.

#include <iostream>

#include <string>

using namespace std;

class Account

{

private:

double Balance;

public:

string Name;

//Constructor, initialise the Balance to zero

Account() {Balance=0.0;}

//Destructor, print closing Balance

~Account()

{

cout << "Closing account :";

print_balance();

}

//Print the balance to the screen (cout)

void print_balance()

{

cout << Name << "’s account has a balance of " << Balance << endl;

}

//Add amount to the balance

void Account::deposit(const double &amount)

{

Balance += amount;

4 OBJECTS AND CLASSES 45

}

};

int main()

{

//Declare and initialise the account

Account ac_001;

ac_001.Name = "John Smith"; ac_001.deposit(100.0);

ac_001.print_balance();

}

The balance of a new account is initially set to zero and the balance will be printed

when the Account object is destroyed (goes out of scope). It is possible to pass variables

to a constructor and so we could also set an initial balance for a new account. It is never

possible to pass arguments to a destructor.

Account::Account(const double &initial_balance)

{Balance = initial_balance;}

int main()

{

//Set the opening balance of the account to 100

Account ac_001(100.0);

//Set the opening balance of the account to 50

Account ac_002 = 50.0;

}

The second form of initialisation, normal assignment using =, only works if the construc-

tor takes a single argument. Note that if the class constructor takes arguments, it is

impossible to create an object without passing those arguments. We can use function

overloading, if required, to provide a number of different constructors.

4 OBJECTS AND CLASSES 46

4.4 Inheritance

C++ allows the creation of new, sometimes called derived, classes from existing, or base

classes. The idea is that the derived classes should be related to the base classes, perhaps

they are more specialised versions of an abstract concept. Let us create a new type of

Account called a SavingsAccount that pays interest on the balance.

class SavingsAccount : public Account

{

private:

double Interest_rate;

public:

//Default Constuctor, call Account’s default constructor

SavingsAccount() : Account()

{

//Set the interest rate

Interest_rate = 0.05;

}

//Constructor with initial balance, call equivalent constructor

//of Account

SavingsAccount(const double &initial_balance) :

Account(initial_balance)

{

//Set the interest rate

Interest_rate = 0.05;

}

//Add interest to the account

void add_interest()

{

Balance += Balance*Interest_rate;

}

};

4 OBJECTS AND CLASSES 47

The new SavingsAccount has all the member features of the Account class, but adds

new functionality of its own. The following simple program

int main()

{

//Create a new savings account with initial balance of 100

SavingsAccount sav_ac_1(100.0);

sav_ac_1.Name = "John Smith";

//Add interest to the account

sav_ac_1.add_interest();

}

should produce the output

Closing account :John Smith’s account has a balance of 105

but instead it fails to compile and produces the error

’Account::Balance’ cannot access private member declared

in class ’Account’

This is because we declared Balance to be private which means that it can only be used

by member functions of the Account class. We could make Balance public, but then

any function anywhere in the program could modify it. The solution is to change the

Account class so that Balance is protected, meaning that it can be used by Account

and any of its derived classes.

class Account:

{

protected:

double Balance;

};

The general syntax for creating derived classes is as follows

class class_name : access-specifier base_class_name {};

4 OBJECTS AND CLASSES 48

The access-specifier can be public, private or protected, just as inside class definitions.

The principle of encapsulation cannot be violated, and so the access-specifier only applies

to the public and protected members of the base class. Private members of the base class

always remain private to that class. Protected members of the base class can be used by

derived classes, but cannot be used outside them. Finally, public members of the base

class remain public in the derived class, unless overruled by the access-specifier. This

can all get quite confusing, but the essence is that data can only be made “more” private

by using an access-specifier in front of a class — private data can never be made public.

4.4.1 Overloading member functions

In the SavingsAccount class, we added extra member functions and data to the base

Account class. We can also use function overloading to modify the functions defined in

the base class. For example, let us create a new account_type function that returns a

string describing the type of account and modify the print_balance function to use of

this function.

#include <iostream>

using namespace std;

//Base Account class

class Account

{

protected:

double Balance;

public:

string Name;

//Constructor that sets initial balance

Account(const double &initial_balance)

{Balance = initial_balance;}

//Return the type of account as a string

string account_type() {return "Basic Account";}

//Print the balance to the screen (cout)

4 OBJECTS AND CLASSES 49

void print_balance()

{

cout << Name << "’s " << account_type()

<< " has a balance of " << Balance << endl;

}

};

//A savings account inherits from the Account class

class SavingsAccount : public Account

{

private:

double Interest_rate;

public:

//Constructor calls Account’s constructor

SavingsAccount(const double &initial_balance) :

Account(initial_balance)

{

//Set the interest rate

Interest_rate = 0.05;

}

//Overload the account type

string account_type() {return "Savings Account";}

};

int main()

{

//Create a savings account

SavingsAccount sav_01(100.0); sav_01.Name = "Fred Philips";

//Create a standard account

Account ac_01(50.0); ac_01.Name = "Fred Philips";

4 OBJECTS AND CLASSES 50

//Print the account names

cout << ac_01.account_type() << endl;

cout << sav_01.account_type() << endl;

//Print the balance of both accounts

ac_01.print_balance();

sav_01.print_balance();

}

The result of the program is the output

Basic Account

Savings Accoung

Fred Philips’s Basic Account has a balance of 50

Fred Philips’s Basic Account has a balance of 100

What has happened? The function account_type has been correctly overloaded when

called directly, but not when it is called indirectly from within the member function

print_balance. The problem is that print_balance is a member function of the

base Account class so that when it is compiled it “does not know” that the function

account_type will be overloaded in SavingsAccount. We can indicate to the compiler

that the function might be overloaded by using the virtual keyword in the initial defi-

nition of the function.

virtual string account_type() {return "Basic Account";}

After this simple modification, the program produces the result

Basic Account

Savings Accoung

Fred Philips’s Basic Account has a balance of 50

Fred Philips’s Savings Account has a balance of 100

If you are writing member functions that are going to be overloaded you should nearly

always make them virtual. It is also possible to define a “pure virtual” function; that

is an interface for a function that must be implemented for every derived class. The

syntax for a “pure virtual” function is

virtual string account_type()=0;

If the “pure virtual” account_type() function is not overloaded in the SavingsAccount

class, the program will not compile.

4 OBJECTS AND CLASSES 51

4.4.2 Multiple inheritance

A class may be derived from more than one base class, in which case the parent classes

are separated by commas in the definition:

class derived: public base1, public base2 {};

One use of multiple inheritance is to “bolt together” functionality from different objects

and it is possible to create very complex hierarchies of objects. One of the hardest parts

of object-oriented programming is creating a simple, but complete, object model.

4.5 Pointers to objects

Pointers to objects can be declared in exactly the same way as any other data type,

Account* ac_pt creates a pointer to an account object. Note that member functions

and data must be accessed from an object pointer by using the arrow operator, ->. An

important feature of pointers to objects is that an object of any derived class can be

assigned to a pointer to a base class. Provided that all overloaded functions have been

defined as virtual functions the correct version of the function will be called.

int main()

{

//An array of three pointers to accounts

Account* ac_pt[3]={0,0,0};

//Allocate a standard account to the first pointer

ac_pt[0] = new Account(100.0); ac_pt[0]->Name = "John";

//Allocate a savings account to the second pointer

ac_pt[1] = new SavingsAccount(500.0); ac_pt[1]->Name = "Mary";

//Loop over all accounts and print the balance

for(unsigned i=0;i<3;i++)

{

//Check that an object has been allocated

if(ac_pt[i] != 0)

{

ac_pt[i]->print_balance();

4 OBJECTS AND CLASSES 52

}

}

//We should delete the objects here to be safe, but because it is

//the end of the program, they will go out of scope and be cleaned

//up anyway

}

The result of the program is

John’s Basic Account has a balance of 100

Mary’s Savings Account has a balance of 500

The Excel object model relies on the extensive use of pointers to objects. For example,

if we have a pointer to a particular Excel application called XL, then we obtain a pointer

to the Worksheet “Sheet1” in the active Workbook as follows:

XL->ActiveWorkbook->Worksheets->Item["Sheet1"];

Note that a pointer to a worksheet is itself an object defined in the Excel namespace.

4.6 The this pointer

Every C++ object contains a pointer to its own location in memory. This pointer is

accessed using the this keyword in member functions of the class, e. g.

Account::print balance()

{

cout << this->Name << "’s account has a balance of "

<< this->Balance << endl;

}

In most member functions, the this pointer is used implicitly by the compiler and it

is not necessary to use the this keyword explicitly. An important exception is when

working in classes derived from a templated base class. Nonetheless, the this pointer is

essential in certain applications, for example, when a member function returns a pointer

to the object itself.

5 INTERFACING C++ AND EXCEL 53

5 Interfacing C++ and Excel

Communication between C++ and Excel is a complex topic and we shall cover only the

very basics in these notes. There are two different (philosophical) choices:

• Call a C++ Add-in from Excel,

• Call Excel functions from within a C++ program.

The first option means that our C++ “backend” can be used from within Excel

without the user having to know anything about C++, making it an attractive choice

for applications developers. A complicating factor when writing such Add-Ins is that

there are several different types, each with slightly different functionality.

The second option is more useful for programmers who would like to use the plot-

ting and data analysis capabilities of Excel from within their stand-alone program; for

example, displaying real-time graphs of simulation results.

5.1 Writing a simple Excel Add-In in C++

We shall consider the most simple type of Add-In, a dynamic link library (DLL). Fur-

thermore, we restrict attention to functions that return a single double or int and take

single (non-array) arguments. In order to use the functions contained in DLLs, we must

write a little VBA wrapper for each function in our Excel worksheet. It is possible to

avoid this step by converting our DLL into an XLL (an Excel-specific library), but this

is beyond the scope of this course.

We now demonstrate how to write and call a function that takes a single double

argument and returns a double value. For the purposes of illustration, we implement a

function that simply returns the square of its argument.

5.1.1 Creating the DLL in Visual Studio

The procedure for creating a DLL is similar to that for creating a standard C++ file.

We create a Visual C++ Win32 Project (not a Console Application) called MyXLLib,

although the name could be anything, of course. Instead of clicking Finish in the

Application Wizard, however, we select the Application Settings option from the sidebar

of the Wizard. We must select DLL as the Application Type and it is helpful to check

the Empty Project button, see Figure 5. We add the (minimum) required two files to

the Source Files directory, one C++ (.cpp) file and one module definitions (.def) file,

5 INTERFACING C++ AND EXCEL 54

Figure 5: The Application Settings options in the Win32 Application Wizard. Note that

the DLL and Empty Project options are selected.

by “right clicking” the Source File folder in the Solution Explorer, selecting Add and

then Add New Item, see Figure 6. The Add New Item Window appears and we select a

C++ file template, choose a name (Square in this case) and then click open (or add),

see Figure 7. Repeating the procedure, but with the appropriate (.def) template, will

create a Module Definition File (also called Square).

We can now write our C++ functions in the usual way in the .cpp file, but, because

we are writing a library, we do not require a main() function; in fact, we must not

include one. In our simple example, a function that returns the square of its argument,

the contents of the C++ file is just

double __stdcall square_in_C(double &arg) {return (arg*arg);}

The argument to the function is passed by reference, the default method in VBA. Note

also the additional instruction __stdcall, a Microsoft specific instruction that is required

to make the complied function compatible with Excel.

The Module Definition File should contain a list of the functions, defined in the .cpp

file, that we wish to export — to be usable by Excel. In our example, the contents of

the .def file is

5 INTERFACING C++ AND EXCEL 55

Figure 6: “Right-clicking” the Source File folder in the Solution Explorer of Visual Studio

brings up a menu from which Add New Item may be selected.

LIBRARY MyXLLib

EXPORTS

square_in_C

where MyXLLib is the name of the library (project). Any number of functions can be

exported in this way by adding each function name on a new line below the EXPORTS

command.

Finally, we build the library by calling the Build Solution option from the Build

menu (Ctrl+Shift+B), which creates the file MyXLLib.dll in the Debug folder of the

project. We have now created the library, but how do we make use of it from Excel?

5 INTERFACING C++ AND EXCEL 56

Figure 7: The Add New Item window in Visual Studio. In this case, a C++ file template

has been selected that will be called Square.cpp.

5.1.2 Calling the library functions from within Excel

In order to use our newly written library, we must start Excel and use the Visual Basic

Editor to declare our library functions. Press Alt + F11 from within Excel to start the

VBA Editor and then insert a Module (Alt + I+ M), which creates an empty window.

Enter the following in the newly created window

’Prototype the interface of the function from the library

Declare Function square_in_C _

Lib "C:/Path_to_Project/Debug/MyXLLib.dll" (arg As Double) as Double

Any line that starts with a single quote ’ is a comment in VBA. The Declare Function

command states that we are defining a new function square_in_C that is contained in

the library specified after the Lib keyword. Note that the path to the DLL must use the

forward slash (/) and not the backslash (\) to separate folders. The underscore _ is a

VBA continuation character. Unlike C++, in VBA the end of a line represents the end

of an instruction. If we have a long instruction that we wish to split over many lines, the

character _ is used to tell VBA that the next newline is not the end of the instruction,

i.e. the instruction continues on the next line. The final part of the instruction specifies

the argument and return types of the function.

5 INTERFACING C++ AND EXCEL 57

We can now use the function square_in_C just as any other worksheet command, see

Figure 8. The steps just described can be easily extended to C++ functions that take

Figure 8: The square in C() function can be used just as any built-in function in an

Excel spreadsheet.

many single arguments, e. g.

double __stdcall integrate(double &a, double &b){//Some commands}

would be prototyped in VBA as

Declare Function integrate _

Lib "C:/Path_to_lib/Lib.dll" (arg1 as Double, arg2 as Double) as Double

5 INTERFACING C++ AND EXCEL 58

If you wish to write more complex C++ functions using arrays of cells as arguments, you

must use a data type known as a Variant; many more details are provided in “Excel

add-in development in C/C++” (2005) or “Financial Applications Using Excel Add-in

Development in C/C++ (2nd Edition)” (2007) both by Steve Dalton and published by

Wiley.

5.2 Using Excel from within C++

In order to use Excel functionality from within a C++ program, we shall use the Microsoft

Component Object Model (COM). It is also possible to use COM to write Excel Add-Ins,

but these are significantly more complex than the basic DLLs described above.

In order to use the COM interface, we must include a number of Microsoft libraries

into our C++ source code. The exact location of these libraries will depend on the

details of your installation. The required import commands are shown below and must

be included at the top of every C++ program that communicates with Excel. The code

in this section has been tested with Visual Studio.NET 2003 and 2005 and Excel 2003,

but will not necessarily work with other versions of the software3.

//MicroSoft Office Objects

#import \

"C:\Program Files\Common Files\Microsoft Shared\OFFICE11\mso.dll" \

rename("DocumentProperties", "DocumentPropertiesXL") \

rename("RGB", "RBGXL")

3Thomas Seeley (Ohio State University) has kindly informed me that the following additional steps

are necessary to make the code work with the latest (as of February 2009) version of Visual C++ Express

Edition:

1. The library, ”Microsoft Platform SDK” must be downloaded from the Internet.

2. The project must reference the Additional Include Directory:

C:\Microsoft Platform SDK\Include

3. The project must reference the Additional Libraries Directory:

C:\Microsoft Platform SDK\Lib

4. A few lines of code need to be added at the top of the main file:

#include <comutil.h>

#include <stdio.h>

#pragma comment(lib, "comsuppw.lib")

#pragma comment(lib, "kernel32.lib")

5 INTERFACING C++ AND EXCEL 59

//Microsoft VBA Objects

#import \

"C:\Program Files\Common Files\Microsoft Shared\VBA\VBA6\vbe6ext.olb"

//Excel Application Objects

#import "C:\Program Files\Microsoft Office\OFFICE11\EXCEL.EXE" \

rename("DialogBox", "DialogBoxXL") rename("RGB", "RBGXL") \

rename("DocumentProperties", "DocumentPropertiesXL") \

rename("ReplaceText", "ReplaceTextXL") \

rename("CopyFile", "CopyFileXL") \

exclude("IFont", "IPicture") no_dual_interfaces

Note the use of the continuation character \ so that compiler directives (commands

beginning with #) can be split over multiple lines. The rename("A","B") directive

changes the name of any strings A that occur in the imported library to B; and is required

to avoid clashes with other libraries in which exactly the same variable, function or class

names have been defined. The exclude directive prevents the import of the specified

items from the library. The final directive no_dual_interfaces changes the manner in

which overloaded functions are called. It must be included so that the _ApplicationPtr,

which has a dual interface, is called in the correct manner.

We can now open an Excel Application from our C++ code, if we declare a pointer

to an Excel Application and then create a single instance of Excel.

int main()

{

Excel::_ApplicationPtr XL;

//A try block is used to trap any errors in communication

try

{

//Initialise COM interface

CoInitialize(NULL);

//Start the Excel Application

XL.CreateInstance(L"Excel.Application");

//Make the Excel Application visible, so that we can see it!

5 INTERFACING C++ AND EXCEL 60

XL->Visible = true;

}

//If a communication error is thrown, catch it and complain

catch(_com_error &error)

{

cout << "COM error " << endl;

}

}

The initialisation and creation of the Excel Application is surrounded by a try block,

which is part of the C++ error-handling system. If any part of the code does something

unexpected it should throw an exception, returning control to the calling function; and

objects that indicate the type of error can be thrown, throw object_constructor();.

The try block acts as a “safety net” that surrounds a section of code that you suspect

might throw an exception (fail). If an exception is thrown within the try block it can

be caught by the catch keyword and any appropriate action can be taken. In the above

example, if there is a communications error a _com_error object will be thrown, which

is caught and an error message is printed on the screen.

The result of the program is that an Excel window is created and displayed on our

screen. The important feature is that we have a pointer to the Excel application that

can be used to communicate between Excel and our C++ program. In fact, the program

is merely a fancy “wrapper” that starts Excel. The inclusion of additional commands

would allow us to start Excel with some custom defaults.

A pointer to an Excel Application Object is the only thing that is required to commu-

nicate with Excel from a C++, or any other, program. If we want to use any of the Excel

objects and functions, however, we must know what they are called and the arguments

that they take. The information is known as the Excel Object Model and is documented

in the on-line help provided with the VBA editor, although it is not easy to decipher.

5.3 The Excel Object Model

The Excel Object Model contains over 200 objects and a vast number of associated

functions. It is impossible to provide a detailed description of the complete model.

Instead, we shall concentrate on a few key objects: Application, Chart, Workbook and

Worksheet.

5 INTERFACING C++ AND EXCEL 61

5.3.1 The Excel Application

The member functions (methods) and data of the Excel Application Object are largely

responsible for “global” events and setting within the running instance of Excel. The

only ones that we shall use are:

Visible Boolean flag: if true the Excel Application Window is displayed

ActiveWorkbook Return a pointer to the active workbook

ActiveSheet Return a pointer to the active worksheet or chart

Quit Close the Excel Application

Workbooks Returns a pointer to the collection of workbooks

5.3.2 The Excel Workbook

Excel Workbooks are all stored in the Workbooks object of the Excel Application. The

most useful member functions of the Workbooks object are shown in the table below:

XL->Workbooks->Add(Excel::xlWorksheet); Add a Workbook containing

a single Worksheet

XL->Workbooks->Open(L"test.xls"); Opens the Workbook test.xls

XL->Workbooks->Close(); Close all open Workbooks

XL->Workbooks->Item["test.xls"]; Return a pointer to test.xls

Each Workbook object contains a collection of Worksheets, a collection of Charts, and

a collection of Sheets, which contains the Worksheets and the Charts. New Charts and

Sheets can be created by calling the Add() member function of the Charts and Sheets

collections, respectively.

5.3.3 The Excel Worksheet and Ranges

For most tasks, the interaction between C++ and Excel should take place at the “Work-

sheet” level. In essence, we want to be able to pass data between Worksheet cells and

our C++ program. The worksheet member function Cells returns a pointer to all the

cells in the worksheet.4

Excel::_WorksheetPtr pSheet = XL->ActiveSheet;

Excel::RangePtr pRange = pSheet->Cells;

4The Excel object model uses a custom data type called a Range to represent a collection of cells in

a worksheet.

5 INTERFACING C++ AND EXCEL 62

The two lines of code above return a pointer to a collection (a Range object) containing

all the cells of the active worksheet5. Once the pointer to the Range has been defined we

can access the cells by using the Item method with a standard C++ array syntax. The

only catch is that the Excel arrays start from the index 1.

pRange->Item[1][1] = 1.0;

pRange->Item[10][1] = "=SIN(A1)";

The above code fragment will set the value in cell A1 to 1.0 and the value in cell A10

will be sin(1) ≈ 0.8. The numerical value of the cell A10 can be read into our program

in the obvious way

double cell_value = pRange->Item[10][1];

We can now read and write to cells in an Excel worksheet, and can call any of the

built-in Excel functions. The “interfacing” is done, but the difficult part, exactly what

to write, is only just beginning. Unfortunately, there is not sufficient time to cover all

possible cases of interest, we finish with a simple(?) example: how to generate a graph

in Excel from data computed in C++.

// Include standard header files

#include <iostream>

#include <cmath>

// Office XP Objects (2002)

#import \

"C:\Program Files\Common Files\Microsoft Shared\OFFICE11\mso.dll" \

rename("DocumentProperties", "DocumentPropertiesXL") \

rename("RGB", "RBGXL")

//Microsoft VBA objects

#import \

"C:\Program Files\Common Files\Microsoft Shared\VBA\VBA6\vbe6ext.olb"

//Excel Application objects

5You may find that you need to use XL->Cells in the second line.

5 INTERFACING C++ AND EXCEL 63

#import "C:\Program Files\Microsoft Office\OFFICE11\EXCEL.EXE" \

rename("DialogBox", "DialogBoxXL") rename("RGB", "RBGXL") \

rename("DocumentProperties", "DocumentPropertiesXL") \

rename("ReplaceText", "ReplaceTextXL") \

rename("CopyFile", "CopyFileXL") \

exclude("IFont", "IPicture") no_dual_interfaces

//Use the standard namespace

using namespace std;

//Define our own function, e^{-x} sin(x)

//In general this could be the result of a simulation, etc.

double f(const double &x) {return (sin(x)*exp(-x));}

//Main driver program

int main()

{

//Surround the entire interfacing code with a try block

try

{

//Initialise the COM interface

CoInitialize(NULL);

//Define a pointer to the Excel application

Excel::_ApplicationPtr xl;

//Start one instance of Excel

xl.CreateInstance(L"Excel.Application");

//Make the Excel application visible

xl->Visible = true;

//Add a (new) workbook

xl->Workbooks->Add(Excel::xlWorksheet);

//Get a pointer to the active worksheet

Excel::_WorksheetPtr pSheet = xl->ActiveSheet;

//Set the name of the sheet

pSheet->Name = "Chart Data";

//Get a pointer to the cells on the active worksheet

5 INTERFACING C++ AND EXCEL 64

Excel::RangePtr pRange = pSheet->Cells;

//Define the number of plot points

unsigned Nplot = 100;

//Set the lower and upper limits for x

double x_low = 0.0, x_high = 20.0;

//Calculate the size of the (uniform) x interval

//Note a cast to an double here

double h = (x_high - x_low)/(double)Nplot;

//Create two columns of data in the worksheet

//We put labels at the top of each column to say what it contains

pRange->Item[1][1] = "x"; pRange->Item[1][2] = "f(x)";

//Now we fill in the rest of the actual data by

//using a single for loop

for(unsigned i=0;i<Nplot;i++)

{

//Calculate the value of x (equally-spaced over the range)

double x = x_low + i*h;

//The first column is our equally-spaced x values

pRange->Item[i+2][1] = x;

//The second column is f(x)

pRange->Item[i+2][2] = f(x);

}

//The sheet "Chart Data" now contains all the data

//required to generate the chart

//In order to use the Excel Chart Wizard,

//we must convert the data into Range Objects

//Set a pointer to the first cell containing our data

Excel::RangePtr pBeginRange = pRange->Item[1][1];

//Set a pointer to the last cell containing our data

Excel::RangePtr pEndRange = pRange->Item[Nplot+1][2];

//Make a "composite" range of the pointers to the start

//and end of our data

//Note the casts to pointers to Excel Ranges

5 INTERFACING C++ AND EXCEL 65

Excel::RangePtr pTotalRange =

pSheet->Range[(Excel::Range*)pBeginRange][(Excel::Range*)pEndRange];

// Create the chart as a separate chart item in the workbook

Excel::_ChartPtr pChart=xl->ActiveWorkbook->Charts->Add();

//Use the ChartWizard to draw the chart.

//The arguments to the chart wizard are

//Source: the data range,

//Gallery: the chart type,

//Format: a chart format (number 1-10),

//PlotBy: whether the data is stored in columns or rows,

//CategoryLabels: an index for the number of columns

// containing category (x) labels

// (because our first column of data represents

// the x values, we must set this value to 1)

//SeriesLabels: an index for the number of rows containing

// series (y) labels

// (our first row contains y labels,

// so we set this to 1)

//HasLegend: boolean set to true to include a legend

//Title: the title of the chart

//CategoryTitle: the x-axis title

//ValueTitle: the y-axis title

pChart->ChartWizard((Excel::Range*)pTotalRange,

(long)Excel::xlXYScatter,

6L,(long)Excel::xlColumns, 1L, 1L, true,

"My Graph", "x", "f(x)");

//Give the chart sheet a name

pChart->Name = "My Data Plot";

}

//If there has been an error, say so

catch(_com_error & error)

{

cout << "COM ERROR" << endl;

}

5 INTERFACING C++ AND EXCEL 66

//Finally Uninitialise the COM interface

CoUninitialize();

//Finish the C++ program

return 0;

}

The result of the above program is that an Excel worksheet will be created that

contains a line graph of the function f(x) = e−x sinx for x ∈ [0, 20], see Figure 9. An

important point is that even though the C++ program has finished, its “child” Excel

program will continue to run until closed as usual.

My Graph

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25

x

f(
x) f(x)

Figure 9: The graph of f(x) = e−x sin x produced by Excel driven from the C++ program

listed above.

